We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Yaw control can effectively enhance wind farm power output, but the vorticity distribution and coherent structures in yawed turbine wakes remain poorly understood. We propose a physical model capable of accurately predicting tip vortex dynamics from their generation to destabilisation. This model integrates a point vortex framework with advanced blade element momentum theory and vortex cylinder theory for yawed turbines. Comparisons with large eddy simulations demonstrate that the model effectively predicts the vorticity distribution of tip vortices and the wake profile of yawed turbines. Finally, we employ sparsity-promoting dynamic mode decomposition to analyse the dynamics of the far wake. Our analysis reveals four primary mode types: (i) the averaged mode; (ii) shear modes; (iii) harmonic modes; and (iv) merging modes. Under yawed conditions, these modes become asymmetric, leading to interactions between the tip and root vortex modes. This direct interaction plays a critical role during the formation process of the counter-rotating vortex pair observed in yawed wakes.
Existing evidence on the association between combined lifestyle and depressive symptoms is limited to the general population and is lacking in individuals with subthreshold depression, a high-risk group for depressive disorders. Furthermore, it remains unclear whether an overall healthy lifestyle can mitigate the association between childhood trauma (CT) and depressive symptoms, even in the general population. We aimed to explore the associations of combined lifestyle, and its interaction with CT, with depressive symptoms and their subtypes (i.e. cognitive-affective and somatic symptoms) among adults with subthreshold depression.
Methods
This dynamic cohort was initiated in Shenzhen, China in 2019, including adults aged 18–65 years with the Patient Health Questionnaire-9 (PHQ-9) score of ≥ 5 but not diagnosed with depressive disorders at baseline. CT (present or absent) was assessed with the Childhood Trauma Questionnaire-Short Form. Combined lifestyle, including no current drinking, no current smoking, regular physical exercise, optimal sleep duration and no obesity, was categorized into 0–2, 3 and 4–5 healthy lifestyles. Depressive symptoms were assessed using the PHQ-9 during follow-up. This cohort was followed every 6 months, and as of March 2023, had been followed for 3.5 years.
Findings
This study included 2298 participants (mean [SD] age, 40.3 [11.1] years; 37.7% male). After fully adjusting for confounders, compared with 0–2 healthy lifestyles, 3 (β coefficient, −0.619 [95% CI, −0.943, −0.294]) and 4–5 (β coefficient, −0.986 [95% CI, −1.302, −0.671]) healthy lifestyles were associated with milder depressive symptoms during follow-up. There exists a significant synergistic interaction between a healthy lifestyle and the absence of CT. The CT-stratified analysis showed that compared with 0–2 healthy lifestyles, 3 healthy lifestyles were associated with milder depressive symptoms in participants with CT, but not in those without CT, and 4–5 healthy lifestyles were associated with milder depressive symptoms in both participants with and without CT, with a stronger association in those with CT. The lifestyle-stratified analysis showed that CT was associated with more severe depressive symptoms in participants with 0–2 healthy lifestyles, but not in those with 3 or 4–5 healthy lifestyles. Cognitive-affective and somatic symptoms showed similar results.
Conclusions
In this 3.5-year longitudinal study of adults with subthreshold depression, an overall healthy lifestyle was associated with subsequent milder depressive symptoms and their subtypes, with a stronger association in adults with CT than those without CT. Moreover, an overall healthy lifestyle mitigated the association of CT with depressive symptoms and their subtypes.
Omega-3 Polyunsaturated Fatty Acids (n-3 PUFAs), including alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are widely found in plant oils and marine organisms. These fatty acids demonstrate significant biological effects, and their adequate intake is essential for maintaining health. However, modern diets often lack sufficient n-3 PUFAs, especially among populations that consume little fish or seafood,leading to a growing interest in n-3 PUFAs supplementation in nutrition and health research. In recent decades, the role of n-3 PUFAs in preventing and treating various diseases has gained increasing attention, particularly in cardiovascular, neurological, ophthalmic, allergic, hepatic, and oncological fields.In orthopedics, n-3 PUFAs exert beneficial effects through several mechanisms, including modulation of inflammatory responses, enhancement of cartilage repair, and regulation of bone metabolism. These effects demonstrate potential for the treatment of conditions such as osteoarthritis (OA), rheumatoid arthritis (RA), gout, osteoporosis (OP), fractures, sarcopenia, and spinal degenerative diseases (SDD). This review summarizes the clinical applications of n-3 PUFAs, with a focus on their research progress in the field of orthopedics, and explores their potential in the treatment of orthopedic diseases.
Epidemiologic evidence on the association between dietary choline, betaine and mortality risk remains limited, particularly among non-Western populations. We examined the association of dietary choline and betaine with all-cause mortality in Chinese adults using data from the China Health and Nutrition Survey 1991–2015. We included 9027 men and 8828 women without CVD and cancer at baseline. Dietary intake was assessed using 3-day 24-hour dietary recalls and household food inventories. Death was ascertained through household surveys in each wave. Time-dependent Cox proportional hazards regression models estimated multivariable-adjusted hazard ratios (HRs) and 95 % CIs. During a median follow-up of 9·1 years, 891 men and 687 women were deceased. Higher total choline intake was associated with lower all-cause mortality in both men (HRQ5 v. Q1 = 0·58 (95 % CI: 0·45, 0·74)) and women (HRQ5 v. Q1 = 0·59 (95 % CI: 0·44, 0·78)). The dose–response curve were reverse J-shaped in men and L-shaped in women (both P-nonlinear ≤ 0·005). Similarly, fat-soluble choline intake was inversely associated with mortality in both men (HRQ5 v. Q1 = 0·59 (95 % CI: 0·46, 0·75)) and women (HRQ5 v. Q1 = 0·53 (95 % CI: 0·40, 0·70)), showing reverse J-shaped patterns (both P-nonlinear < 0·001). A J-shaped association between water-soluble choline and mortality was observed in women (P-nonlinear < 0·001), but a null association was found in men. Betaine intake was not associated with all-cause mortality in either sex. Our findings suggest that adequate choline intake is linked to reduced all-cause mortality in Chinese adults with predominantly plant-based diets.
Major depressive disorder (MDD) is a leading cause of disability worldwide. Investigating early-stage alterations in cerebral intrinsic activity among drug-naive patients may enhance our understanding of MDD’s neurobiological mechanisms and contribute to early diagnosis and intervention.
Aims
To examine alterations in the amplitude of low-frequency fluctuation (ALFF) in first-episode, drug-naive MDD individuals and explore associations between ALFF changes and clinical parameters, including depression severity and illness duration.
Method
A total of 30 first-episode, drug-naive MDD individuals (mean illness duration 14 weeks) and 52 healthy controls were included in this study. Resting-state functional magnetic resonance imaging was used to obtain whole-brain ALFF measurements. Voxel-based ALFF maps were compared between MDD and healthy control groups using a two-sample t-test. Simple regression analysis was performed to assess associations between ALFF and clinical measures, including Hamilton Rating Scale for Depression (HAMD) scores and illness duration.
Results
MDD individuals exhibited significantly increased ALFF in the dorsal anterior cingulate cortex and vermal subregion V3 of the cerebellum. Additionally, ALFF in the right dorsolateral prefrontal cortex was negatively correlated with HAMD scores (r = –0.591, P < 0.001). However, no significant association was found between ALFF and illness duration.
Conclusions
This study demonstrates early-stage ALFF alterations in drug-naive MDD patients, particularly in brain regions implicated in cognitive and emotional regulation. These findings suggest potential neuroimaging biomarkers for the early diagnosis and intervention of MDD.
The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is economically one of the most threatening pests in tomato cultivation, which not only causes direct damage but also transmits many viruses. Breeding whitefly-resistant tomato varieties is a promising and environmentally friendly method to control whitefly populations in the field. Accumulating evidence from tomato and other model systems demonstrates that flavonoids contribute to plant resistance to herbivorous insects. Previously, we found that high flavonoid-producing tomato line deterred whitefly oviposition and settling behaviours, and was more resistant to whiteflies compared to the near-isogenic low flavonoid-producing tomato line. The objective of the current work is to describe in detail different aspects of the interaction between the whitefly and two tomato lines, including biochemical processes involved. Electrical penetration graph recordings showed that high flavonoid-producing tomato reduced whitefly probing and phloem-feeding efficiency. We also studied constitutive and induced plant defence responses and found that whitefly induced stronger reactive oxygen species accumulation through NADPH oxidase in high flavonoid-producing tomato than in low flavonoid-producing tomato. Moreover, whitefly feeding induced the expression of callose synthase genes and resulted in callose deposition in the sieve elements in high flavonoid-producing tomato but not in low flavonoid-producing tomato. As a consequence, whitefly feeding on high flavonoid-producing tomato significantly decreased uptake of phloem and reduced its performance when compared to low flavonoid-producing tomato. These results indicate that high flavonoid-producing tomato provides phloem-based resistance against whitefly infestation and that the breeding of such resistance in new varieties could enhance whitefly management.
The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is a highly destructive polyvorous pest with a wide host range and the ability to feed continuously with seasonal changes. This destructive pest significantly damages crops and can also utilize non-agricultural plants, such as weeds, as alternative hosts. However, the adaptation mechanisms of S. frugiperda when switching between crop and non-crop hosts remain poorly understood, posing challenges for effective monitoring and integrated pest management strategies. Therefore, this study aims to elucidate the adaptability of S. frugiperda to different host plants. Results showed that corn (Zea mays L.) was more suitable for the growth and development of S. frugiperda than wheat (Triticum aestivum L.) and goosegrass (Eleusine indica). Transcriptome analysis identified 699 genes differentially expressed when fed on corn, wheat, and goosegrass. The analysis indicated that the detoxification metabolic pathway may be related to host adaptability. We identified only one SfGSTs2 gene within the GST family and investigated its functional role across different developmental stages and tissues by analysing its spatial and temporal expression patterns. The SfGSTs2 gene expression in the midgut of larvae significantly decreased following RNA interference. Further, the dsRNA-fed larvae exhibited a decreased detoxification ability, higher mortality, and reduced larval weight. The findings highlight the crucial role of SfGSTs2 in host plant adaptation. Evaluating the feeding preferences of S. frugiperda is significant for controlling important agricultural pests.
An actively controllable cascaded proton acceleration driven by a separate 0.8 picosecond (ps) laser is demonstrated in proof-of-principle experiments. MeV protons, initially driven by a femtosecond laser, are further accelerated and focused into a dot structure by an electromagnetic pulse (EMP) on the solenoid, which can be tuned into a ring structure by increasing the ps laser energy. An electrodynamics model is carried out to explain the experimental results and show that the dot-structured proton beam is formed when the outer part of the incident proton beam is optimally focused by the EMP force on the solenoid; otherwise, it is overfocused into a ring structure by a larger EMP. Such a separately controlled mechanism allows precise tuning of the proton beam structures for various applications, such as edge-enhanced proton radiography, proton therapy and pre-injection in traditional accelerators.
Oasis communities across Central Asia were key to the emergence and maintenance of the ancient Silk Roads that spanned Eurasia from the late second century BC, yet our understanding of early interaction networks in this region is limited. Multi-isotopic analysis of human teeth from the Zaghunluq Cemetery, southern Xinjiang (sixth century BC to first century AD) now suggests that oasis communities established intricate exchange networks, forming strong ties with other nearby oases and mountain pastoralists and weak ties, facilitated through in migration, with more distant regions. These diverse connections, the authors argue, made possible cultural exchange across the challenging geography of eastern Central Asia.
We sought to assess the degree to which environmental risk factors affect CHD prevalence using a case–control study.
Methods:
A hospital-based study was conducted by collecting data from outpatients between January 2016 and January 2021, which included 31 CHD cases and 72 controls from eastern China. Risk ratios were estimated using univariate and multivariate logistic regression models and mediating effect analysis.
Results:
Residential characteristics (usage of cement flooring, odds ratio = 17.04[1.954–148.574], P = 0.01; musty smell, odds ratio = 3.105[1.198–8.051], P = 0.02) and indoor total volatile organic compound levels of participants’ room (odds ratio = 31.846[8.187–123.872, P < 0.001), benzene level (odds ratio = 7.370[2.289–23.726], P = 0.001) increased the risk of CHDs in offspring. And folic acid plays a masking effect, which mitigates the affection of the total volatile organic compound (indirect effect = -0.072[−0.138,-0.033]) and formaldehyde (indirect effect = −0.109[-0.381,-0.006]) levels on the incidence of CHDs. While food intake including milk (odds ratio = 0.396[0.16–0.977], P = 0.044), sea fish (odds ratio = 0.273[0.086–0.867], P = 0.028), and wheat (odds ratio = 0.390[0.154–0.990], P = 0.048) were all protective factors for the occurrence of CHDs. Factors including women reproductive history (history of conception control, odds ratio = 2.648[1.062–6.603], P = 0.037; history of threatened abortion, odds ratio = 2.632[1.005–6.894], P = 0.049; history of dysmenorrhoea (odds ratio = 2.720[1.075–6.878], P = 0.035); sleep status (napping habit during daytime, odds ratio = 0.856[0.355–2.063], P = 0.047; poor sleep quality, odds ratio = 3.180[1.037–9.754], P = 0.043); and work status (working time > 40h weekly, odds ratio = 2.882[1.172–7.086], P = 0.021) also influenced the CHDs incidence to differing degrees.
Conclusion:
Diet habits, nutrients intake, psychological status of pregnant women, and residential air quality were associated with fetal CHDs. Indoor total volatile organic compound content was significantly correlated with CHDs risk, and folic acid may serve as a masking factor that reduce the harmful effects of air pollutants.
To capture the airspeed-dependent dynamics of flexible aircraft, high-order aeroservoelastic systems can generally be expressed as linear parameter-varying (LPV) models. This paper presents a comprehensive model order reduction and control design process for grid-based LPV systems, and takes the flexible aircraft FLEXOP as an example for verification. The LPV model order reduction method is extended from projection-based linear time-invariant methods through construction of continuous transformations. The corresponding algorithm can be programmed to automatically perform the model order reduction for LPV systems and simultaneously ensure the state consistency between grid points and the continuity of state-space data interpolation. By applying this method, a 680th-order high-fidelity LPV model of the FLEXOP aircraft is reduced to a control-oriented model with only 19 states. Considering that the frequencies of rigid-body and flexible modes are close under certain parameter conditions, an integrated design approach for rigid-flexible coupling control is employed in this paper. Instead of separately designing a baseline rigid-body flight controller and a flutter suppression controller for each unstable flexible mode, a parameter-dependent dynamic output-feedback controller is designed. The resulting controller effectively expands the flutter-free flight envelope, ensuring rigid-body attitude and velocity tracking performance while stabilising the two originally unstable flutter modes.
The robot manipulator is commonly employed in the space station experiment cabinet for the disinfection task. The challenge lies in devising a motion trajectory for the robot manipulator that satisfies both performance criteria and constraints within the confined space of an experimental cabinet. To address this issue, this paper proposes a trajectory planning method in joint space. This method constructs the optimal trajectory by transforming the original problem into a constrained multi-objective optimization problem. This is then solved and integrated with the seventh-degree B-spline curve. The optimization algorithm utilizes an indicator-based adaptive differential evolution algorithm, enhanced with improved Tent chaotic mapping and opposition-based learning for population initialization. The method employed the Fréchet distance to design a trajectory selection strategy based on the Pareto solutions to ensure that the planned trajectory complies with Cartesian space requirements. This allows the robot manipulator end-effector to approximate the desired path in Cartesian space closely. The findings indicate that the proposed method can effectively design the robot manipulator trajectory, considering both joint motion performance and end-effector motion constraints. This ensures that the robot manipulator operates efficiently and safely within the experimental cabinet.
This study presents a novel investigation into the vortex dynamics of flow around a near-wall rectangular cylinder based on direct numerical simulation at $Re=1000$, marking the first in-depth exploration of these phenomena. By varying aspect ratios ($L/D = 5$, $10$, $15$) and gap ratios ($G/D = 0.1$, $0.3$, $0.9$), the study reveals the vortex dynamics influenced by the near-wall effect, considering the incoming laminar boundary layer flow. Both $L/D$ and $G/D$ significantly influence vortex dynamics, leading to behaviours not observed in previous bluff body flows. As $G/D$ increases, the streamwise scale of the upper leading edge (ULE) recirculation grows, delaying flow reattachment. At smaller $G/D$, lower leading edge (LLE) recirculation is suppressed, with upper Kelvin–Helmholtz vortices merging to form the ULE vortex, followed by instability, differing from conventional flow dynamics. Larger $G/D$ promotes the formation of an LLE shear layer. An intriguing finding at $L/D = 5$ and $G/D = 0.1$ is the backward flow of fluid from the downstream region to the upper side of the cylinder. At $G/D = 0.3$, double-trailing-edge vortices emerge for larger $L/D$, with two distinct flow behaviours associated with two interactions between gap flow and wall recirculation. These interactions lead to different multiple flow separations. For $G/D = 0.9$, the secondary vortex (SV) from the plate wall induces the formation of a tertiary vortex from the lower side of the cylinder. Double-SVs are observed at $L/D = 5$. Frequency locking is observed in most cases, but is suppressed at $L/D = 10$ and $G/D = 0.9$, where competing shedding modes lead to two distinct evolutions of the SV.
Offspring of parents with bipolar disorder (BD offspring) face elevated risks for emotional dysregulation and cognitive deficits, particularly in working memory. This study investigates working memory deficits and their neural correlates in BD offspring.
Methods
We assessed 41 BD offspring and 25 age-matched healthy controls (HCs) using a spatial N-back task and task-related functional magnetic resonance imaging (fMRI).
Results
Compared to HCs, BD offspring exhibit reduced accuracy and lower signal-detection sensitivity (d′) on the 1-back task. fMRI reveals hyperactivation in the right intracalcarine cortex/lingual gyrus (ICC/LG) in BD offspring, particularly during the 1-back condition. Psychophysiological interaction (PPI) analyses show reduced connectivity between the right ICC/LG and the left postcentral gyrus in BD offspring as task load increases from 0-back to 1-back. This connectivity positively correlates with 1-back task performance in HCs but not in BD offspring. Additionally, using bilateral dorsolateral prefrontal cortex (DLPFC) as regions of interest, PPI analyses show diminished condition-dependent connectivity between the left DLPFC and the left superior frontal gyrus/paracingulate cortex, and between the right DLPFC and the left postcentral gyrus/precentral gyrus in BD offspring as the task load increases.
Conclusions
These findings suggest that BD offspring exhibit working memory deficits and impaired neural connectivity involving both sensory processing and higher-order cognitive systems. Such deficits may emerge at a genetically predisposed stage of bipolar disorder, underscoring the significance of early identification and intervention strategies.
Ice shelves affect the stability of ice sheets by supporting the mass balance of ice upstream of the grounding line. Marine ice, formed from supercooled water freezing at the base of ice shelves, contributes to mass gain and affects ice dynamics. Direct measurements of marine ice thickness are rare due to the challenges of borehole drilling. Here we assume hydrostatic equilibrium to estimate marine ice distribution beneath the Amery Ice Shelf (AIS) using meteoric ice-thickness data obtained from radio-echo sounding collected during the Chinese National Antarctic Research Expedition between 2015 and 2019. This is the first mapping of marine ice beneath the AIS in nearly 20 years. Our new estimates of marine ice along two longitudinal bands beneath the northwest AIS are spatially consistent with earlier work but thicker. We also find a marine ice layer exceeding 30 m of thickness in the central ice shelf and patchy refreezing downstream of the grounding line. Thickness differences from prior results may indicate time-variation in basal melting and freezing patterns driven by polynya activity and coastal water intrusions masses under the ice shelf, highlighting that those changes in ice–ocean interaction are impacting ice-shelf stability.
Industrial robots are widely utilized in the machining of complex parts because of their flexibility. However, their low positioning accuracy and spatial geometric error characteristics significantly limit the contour precision of robot machined parts. Therefore, in the robot machining procedure, an in situ measurement system is typically required. This study aims to enhance the trajectory accuracy of robotic machining through robotic in situ measurement and meta-heuristic optimization. In this study, a measurement-machining dual-robot system for measurement and machining is established, consisting of a measurement robot with a laser sensor mounted at the robot end and a machining robot equipped with a machining tool. In the measuring process, high-precision standard spheres are set on the edge of the machining area, and the high-precision standard geometry is measured by the measurement robot. According to measured geometry information in the local area, the trajectory accuracy for the machining robot is improved. By utilizing the standard radius of the standard spheres and adopting a meta-heuristic optimization algorithm, this study addresses the complexity of the robot kinematics model, while also overcoming local optima commonly introduced by gradient-based iterative methods. The results of the experiments in this study confirm that the proposed method markedly refines the precision of the robot machining trajectory.
This study elucidated the impacts of coenzyme Q10 (COQ10) supplementation in a high-fat diet (HFD) on growth, lipid metabolism and mitochondrial function in spotted seabass (Lateolabrax maculatus). Totally five diets were formulated: a diet with normal fat content (11 % lipid, NFD), a HFD (17 % lipid) and three additional diets by supplementing 5, 20 or 80 mg/kg of COQ10 to the HFD. After an 8-week culture period, samples were collected and analysed. The results demonstrated that COQ10 inclusion prevented the HFD-induced deterioration of growth performance and feed utilisation. COQ10 alleviated the deposition of saturated fatty acids following HFD intake and promoted the assimilation of n-3 and n-6 PUFA. Moreover, COQ10 administration inhibited the surge in serum transaminase activity and reduced hepatic lipid content following HFD ingestion, which was consistent with the results of oil red O staining. In addition, HFD feeding led to reduced hepatic citrate synthase and succinate dehydrogenase activities and decreased ATP content. Notably, COQ10 administration improved these indices and up-regulated the expression of mitochondrial biogenesis-related genes (pgc-1α, pgc-1β, nrf-1, tfam) and autophagy-related genes (pink1, mul1, atg5). In summary, supplementing 20–80 mg/kg of COQ10 in the HFD promoted growth performance, alleviated hepatic fat accumulation and enhanced liver mitochondrial function in spotted seabass.
Recent studies have increasingly utilized gradient metrics to investigate the spatial transitions of brain organization, enabling the conversion of macroscale brain features into low-dimensional manifold representations. However, it remains unclear whether alterations exist in the cortical morphometric similarity (MS) network gradient in patients with schizophrenia (SCZ). This study aims to examine potential differences in the principal MS gradient between individuals with SCZ and healthy controls and to explore how these differences relate to transcriptional profiles and clinical phenomenology.
Methods
MS network was constructed in this study, and its gradient of the network was computed in 203 patients with SCZ and 201 healthy controls, who shared the same demographics in terms of age and gender. To examine irregularities in the MS network gradient, between-group comparisons were carried out, and partial least squares regression analysis was used to study the relationships between the MS network gradient-based variations in SCZ, and gene expression patterns and clinical phenotype.
Results
In contrast to healthy controls, the principal MS gradient of patients with SCZ was primarily significantly lower in sensorimotor areas, and higher in more areas. In addition, the aberrant gradient pattern was spatially linked with the genes enriched for neurobiologically significant pathways and preferential expression in various brain regions and cortical layers. Furthermore, there were strong positive connections between the principal MS gradient and the symptomatologic score in SCZ.
Conclusions
These findings showed changes in the principal MS network gradient in SCZ and offered potential molecular explanations for the structural changes underpinning SCZ.