We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A Chebyshev-distributed 1 × 8 beamforming network with improved phase flatness is presented, where four beams with constant beam pointing and low sidelobe levels (SLL) can be generated. It consists of two arbitrary-amplitude 4 × 4 Blass-like matrices and one 1 × 8 switch control circuit. The newly introduced 4 × 4 Blass-like matrices can obtain arbitrary amplitude and phase differences by adjusting the transmission coefficient and phase of each unit. Besides, four output phase differences can be generated by controlling the 1 × 8 switch control circuit. An example is implemented for validation and phase compensation method is adopted for minimizing the phase difference error within the operated bandwidth to maintain constant beam pointing. Measurements show that the prototype exhibits output amplitude ratios of 0.143:0.341: 0.71:1:1:0.71:0.341:0.143, which fits the Chebyshev distribution. Under the criterion of |S11| < −10 dB, an overlapped fractional bandwidth of 24.1% is obtained. In addition, from 5.5 to 6.1 GHz (10.3%), the maximum amplitude and phase difference errors are 1.5 dB and 15°, respectively. Finally, the proposed network is connected to a 1 × 8 array. Within 10.3% bandwidth, the SLLs of less than −20 dB are realized without beam-pointing deviation.
Existing evidence on the association between combined lifestyle and depressive symptoms is limited to the general population and is lacking in individuals with subthreshold depression, a high-risk group for depressive disorders. Furthermore, it remains unclear whether an overall healthy lifestyle can mitigate the association between childhood trauma (CT) and depressive symptoms, even in the general population. We aimed to explore the associations of combined lifestyle, and its interaction with CT, with depressive symptoms and their subtypes (i.e. cognitive-affective and somatic symptoms) among adults with subthreshold depression.
Methods
This dynamic cohort was initiated in Shenzhen, China in 2019, including adults aged 18–65 years with the Patient Health Questionnaire-9 (PHQ-9) score of ≥ 5 but not diagnosed with depressive disorders at baseline. CT (present or absent) was assessed with the Childhood Trauma Questionnaire-Short Form. Combined lifestyle, including no current drinking, no current smoking, regular physical exercise, optimal sleep duration and no obesity, was categorized into 0–2, 3 and 4–5 healthy lifestyles. Depressive symptoms were assessed using the PHQ-9 during follow-up. This cohort was followed every 6 months, and as of March 2023, had been followed for 3.5 years.
Findings
This study included 2298 participants (mean [SD] age, 40.3 [11.1] years; 37.7% male). After fully adjusting for confounders, compared with 0–2 healthy lifestyles, 3 (β coefficient, −0.619 [95% CI, −0.943, −0.294]) and 4–5 (β coefficient, −0.986 [95% CI, −1.302, −0.671]) healthy lifestyles were associated with milder depressive symptoms during follow-up. There exists a significant synergistic interaction between a healthy lifestyle and the absence of CT. The CT-stratified analysis showed that compared with 0–2 healthy lifestyles, 3 healthy lifestyles were associated with milder depressive symptoms in participants with CT, but not in those without CT, and 4–5 healthy lifestyles were associated with milder depressive symptoms in both participants with and without CT, with a stronger association in those with CT. The lifestyle-stratified analysis showed that CT was associated with more severe depressive symptoms in participants with 0–2 healthy lifestyles, but not in those with 3 or 4–5 healthy lifestyles. Cognitive-affective and somatic symptoms showed similar results.
Conclusions
In this 3.5-year longitudinal study of adults with subthreshold depression, an overall healthy lifestyle was associated with subsequent milder depressive symptoms and their subtypes, with a stronger association in adults with CT than those without CT. Moreover, an overall healthy lifestyle mitigated the association of CT with depressive symptoms and their subtypes.
This paper provides an overview of the current status of ultrafast and ultra-intense lasers with peak powers exceeding 100 TW and examines the research activities in high-energy-density physics within China. Currently, 10 high-intensity lasers with powers over 100 TW are operational, and about 10 additional lasers are being constructed at various institutes and universities. These facilities operate either independently or are combined with one another, thereby offering substantial support for both Chinese and international research and development efforts in high-energy-density physics.
Optical fibers offer convenient access to a variety of nonlinear phenomena. However, due to their inversion symmetry, second-order nonlinear effects, such as second-harmonic generation (SHG), are challenging to achieve. Here, all-fiber in-core SHG with high beam quality is achieved in a random fiber laser (RFL). The fundamental wave (FW) is generated in the same RFL. The phase-matching condition is mainly achieved through an induced periodic electric field and the gain is enhanced through the passive spatiotemporal gain modulation and the extended fiber. The conversion needs no pretreatment and the average second-harmonic (SH) power reaches up to 10.06 mW, with a corresponding conversion efficiency greater than 0.04%. Moreover, a theoretical model is constructed to explain the mechanism and simulate the evolution of the SH and FW. Our work offers a simple method to generate higher brightness for in-fiber SHs, and may further provide new directions for research on all-fiber χ(2)-based nonlinear fiber optics and RFLs.
Immunological castration can be an alternative to traditional surgical castration. The active immunization against GnRH or kisspeptin has a castrating effect. To date, the fusion protein vaccine of combination with GnRH and kisspeptin have not been studied. Thus, the present study will develop a GnRH6-kisspeptin vaccine by genetic engineering method and investigate its immunocastration effect in male rats. Twenty 20-day-old male rats were randomly divided into two groups: the control group (n=10) and the immunization group (n=10). The initial immunization took place at week 0 followed by three booster doses administered intervals. The control group received an equivalent dose of white oil adjuvant. Orbital blood samples were collected at various time points following the initial immunization, at 0, 2, 4, 6, 8, 10 and 12 weeks, respectively. The entire left testis was weighed and its volume measured at week 12. Samples from the right testis were obtained for histological analysis. Serum levels of GnRH and kisspeptin antibodies, as well as testosterone levels were determined using ELISA. The results showed that the serum levels of GnRH and kisspeptin antibody titres of the immunized rats were significantly higher compared to the control group (P<0.05). Additionally, the testosterone concentration was effectively reduced following the intensified immunization. The testes of the immunized group exhibited a reduction in size and a significant decrease in the number of spermatogonia in the testicular tissue compared to the control group (P<0.05). These data indicate that the recombinant GnRH6-kisspeptin protein effectively induced immunological castration in rats.
Machine learning has already shown promising potential in tiled-aperture coherent beam combining (CBC) to achieve versatile advanced applications. By sampling the spatially separated laser array before the combiner and detuning the optical path delays, deep learning techniques are incorporated into filled-aperture CBC to achieve single-step phase control. The neural network is trained with far-field diffractive patterns at the defocus plane to establish one-to-one phase-intensity mapping, and the phase prediction accuracy is significantly enhanced thanks to the strategies of sin-cos loss function and two-layer output of the phase vector that are adopted to resolve the phase discontinuity issue. The results indicate that the trained network can predict phases with improved accuracy, and phase-locking of nine-channel filled-aperture CBC has been numerically demonstrated in a single step with a residual phase of λ/70. To the best of our knowledge, this is the first time that machine learning has been made feasible in filled-aperture CBC laser systems.
Based on a 4f system, a 0° reflector and a single laser diode side-pump amplifier, a new amplifier is designed to compensate the spherical aberration of the amplified laser generated by a single laser diode side-pump amplifier and enhance the power of the amplified laser. Furthermore, the role of the 4f system in the passive spherical aberration compensation and its effect on the amplified laser are discussed in detail. The results indicate that the amplification efficiency is enhanced by incorporating a 4f system in a double-pass amplifier and placing a 0° reflector only at the focal point of the single-pass amplified laser. This method also effectively uses the heat from the gain medium (neodymium-doped yttrium aluminium garnet) of the amplifier to compensate the spherical aberration of the amplified laser.
The betatron radiation source features a micrometer-scale source size, a femtosecond-scale pulse duration, milliradian-level divergence angles and a broad spectrum exceeding tens of keV. It is conducive to the high-contrast imaging of minute structures and for investigating interdisciplinary ultrafast processes. In this study, we present a betatron X-ray source derived from a high-charge, high-energy electron beam through a laser wakefield accelerator driven by the 1 PW/0.1 Hz laser system at the Shanghai Superintense Ultrafast Laser Facility (SULF). The critical energy of the betatron X-ray source is 22 ± 5 keV. The maximum X-ray flux reaches up to 4 × 109 photons for each shot in the spectral range of 5–30 keV. Correspondingly, the experiment demonstrates a peak brightness of 1.0 × 1023 photons·s−1·mm−2·mrad−2·0.1%BW−1, comparable to those demonstrated by third-generation synchrotron light sources. In addition, the imaging capability of the betatron X-ray source is validated. This study lays the foundation for future imaging applications.
Although it is well established that gestational diabetes mellitus (GDM) is associated with fetal overgrowth in singleton pregnancies, little is known about its role in twins. We aimed to explore the relationship between GDM and the longitudinal fetal growth in twin pregnancies. This was a retrospective matched cohort study of GDM and non-GDM twin pregnancies delivered ≥36 weeks without other complications. All the women performed ≥3 ultrasounds after 22 weeks. Linear mixed models (LMMs) were used to explore the relationships between longitudinal fetal growth trajectories and GDM. Group-based trajectory modeling (GBTM) and generalized estimating equation (GEE) were applied to identify the latent growth patterns and investigate their relationships with GDM. In total, 215 GDM and 645 non-GDM twins were included, the majority of the patients did not require medication therapy (n = 202, GDMA1). LMM revealed that, compared with non-GDM, GDM was associated with an average increase in fetal weight of 4.36 g (95% CI [1.25, 7.48]) per week. GBTM and GEE further revealed that GDM increased the odds of fetal weight trajectory to nearly 40% of the total fetal weight trajectory, classified into the high-speed group (aOR = 1.39, 95% CI [1.03, 1.88]), associating with a 49.44 g (95% CI [11.41, 87.48]) increase in birth weight. Subgroup analysis revealed that all these differences were only significant among the GDMA1 pregnancies (p < .05). GDM (GDMA1) is significantly associated with an increase in fetal weight during gestation in twin pregnancies. However, this acceleration is mild, and its significance requires further exploration.
Suicidal ideation (SI) is very common in patients with major depressive disorder (MDD). However, its neural mechanisms remain unclear. The anterior cingulate cortex (ACC) region may be associated with SI in MDD patients. This study aimed to elucidate the neural mechanisms of SI in MDD patients by analyzing changes in gray matter volume (GMV) in brain structures in the ACC region, which has not been adequately studied to date.
Methods
According to the REST-meta-MDD project, this study subjects consisted of 235 healthy controls and 246 MDD patients, including 123 MDD patients with and 123 without SI, and their structural magnetic resonance imaging data were analyzed. The 17-item Hamilton Depression Rating Scale (HAMD) was used to assess depressive symptoms. Correlation analysis and logistic regression analysis were used to determine whether there was a correlation between GMV of ACC and SI in MDD patients.
Results
MDD patients with SI had higher HAMD scores and greater GMV in bilateral ACC compared to MDD patients without SI (all p < 0.001). GMV of bilateral ACC was positively correlated with SI in MDD patients and entered the regression equation in the subsequent logistic regression analysis.
Conclusions
Our findings suggest that GMV of ACC may be associated with SI in patients with MDD and is a sensitive biomarker of SI.
Reliability analysis of stress–strength models usually assumes that the stress and strength variables are independent. However, in numerous real-world scenarios, stress and strength variables exhibit dependence. This paper investigates the reliability estimation in a multicomponent stress–strength model for parallel-series system assuming that the dependence between stress and strength is based on the Clayton copula. The estimators for the unknown parameters and system reliability are derived using the two-step maximum likelihood estimation and the maximum product spacing methods. Additionally, confidence intervals are constructed by utilizing asymptotically normal distribution theory and bootstrap method. Furthermore, Monte Carlo simulations are conducted to compare the effectiveness of the proposed inference methods. Finally, a real dataset is analyzed for illustrative purposes.
The school–vacation cycle may have impacts on the psychological states of adolescents. However, little evidence illustrates how transition from school to vacation impacts students’ psychological states (e.g. depression and anxiety).
Aims
To explore the changing patterns of depression and anxiety symptoms among adolescent students within a school–vacation transition and to provide insights for prevention or intervention targets.
Method
Social demographic data and depression and anxiety symptoms were measured from 1380 adolescent students during the school year (age: 13.8 ± 0.88) and 1100 students during the summer vacation (age: 14.2 ± 0.93) in China. Multilevel mixed-effect models were used to examine the changes in depression and anxiety levels and the associated influencing factors. Network analysis was used to explore the symptom network structures of depression and anxiety during school and vacation.
Results
Depression and anxiety symptoms significantly decreased during the vacation compared to the school period. Being female, higher age and with lower mother's educational level were identified as longitudinal risk factors. Interaction effects were found between group (school versus vacation) and the father's educational level as well as grade. Network analyses demonstrated that the anxiety symptoms, including ‘Nervous’, ‘Control worry’ and ‘Relax’ were the most central symptoms at both times. Psychomotor disturbance, including ‘Restless’, ‘Nervous’ and ‘Motor’, bridged depression and anxiety symptoms. The central and bridge symptoms showed variation across the school vacation.
Conclusions
The school–vacation transition had an impact on students’ depression and anxiety symptoms. Prevention and intervention strategies for adolescents’ depression and anxiety during school and vacation periods should be differentially developed.
Despite growing awareness of the mental health damage caused by air pollution, the epidemiologic evidence on impact of air pollutants on major mental disorders (MDs) remains limited. We aim to explore the impact of various air pollutants on the risk of major MD.
Methods
This prospective study analyzed data from 170 369 participants without depression, anxiety, bipolar disorder, and schizophrenia at baseline. The concentrations of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5), particulate matter with aerodynamic diameter > 2.5 μm, and ≤ 10 μm (PM2.5–10), nitrogen dioxide (NO2), and nitric oxide (NO) were estimated using land-use regression models. The association between air pollutants and incident MD was investigated by Cox proportional hazard model.
Results
During a median follow-up of 10.6 years, 9 004 participants developed MD. Exposure to air pollution in the highest quartile significantly increased the risk of MD compared with the lowest quartile: PM2.5 (hazard ratio [HR]: 1.16, 95% CI: 1.09–1.23), NO2 (HR: 1.12, 95% CI: 1.05–1.19), and NO (HR: 1.10, 95% CI: 1.03–1.17). Subgroup analysis showed that participants with lower income were more likely to experience MD when exposed to air pollution. We also observed joint effects of socioeconomic status or genetic risk with air pollution on the MD risk. For instance, the HR of individuals with the highest genetic risk and highest quartiles of PM2.5 was 1.63 (95% CI: 1.46–1.81) compared to those with the lowest genetic risk and lowest quartiles of PM2.5.
Conclusions
Our findings highlight the importance of air pollution control in alleviating the burden of MD.
The objective of this study was to investigate the genetic link between the age at first birth (AFB) and the occurrence of preterm labor and delivery, utilizing Mendelian randomization (MR) data alongside genomewide association analysis (GWAS). We obtained AFB-related GWAS summary data from the European Bioinformatics Institute database and preterm labor and delivery data was sourced from the FinnGen Consortium. The study considered AFB as exposure variables, with the incidence of preterm labor and delivery serving as the outcome variable. Several MR analysis methods, such as inverse-variance weighted (IVW), MR Egger, weighted median, simple, and weighted mode were utilized. Besides MR-Egger intercepts, Cochrane’s Q test evaluated heterogeneity in the MR data, while MR-PRESSO test checked for horizontal pleiotropy. To assess the association’s sensitivity, A leave-one-out approach was utilized to evaluate the sensitivity of the association. The IVW analysis validated that AFB is an independent risk factor for preterm labor and delivery (p < .001). Horizontal pleiotropy was unlikely to bias causality (p > .05). The likelihood of horizontal pleiotropy affecting causality was low (p > .05), and there was no indication of heterogeneity among the genetic variants (p > .05). Ultimately, a leave-one-out analysis confirmed the stability and reliability of this correlation. Our research indicated that AFB is a protective factor for preterm labor and delivery. Further research is required to clarify the possible mechanisms.
The self-generated magnetic field in three-dimensional (3-D) single-mode ablative Rayleigh–Taylor instability (ARTI) relevant to the acceleration phase of a direct-drive inertial confinement fusion (ICF) implosion is investigated. It is found that stronger magnetic fields up to a few thousand teslas can be generated by 3-D ARTI rather than by its two-dimensional (2-D) counterpart. The Nernst effects significantly alter the magnetic field convection and amplify the magnetic fields. The magnetic field of thousands of teslas yields the Hall parameter of the order of unity, leading to profound magnetized heat flux modification. While the magnetic field significantly accelerates the bubble growth in the short-wavelength 2-D modes through modifying the heat fluxes, the magnetic field mostly accelerates the spike growth but has little influence on the bubble growth in 3-D ARTI. The accelerated growth of spikes in 3-D ARTI is expected to enhance material mixing and degrade ICF implosion performance. This work is focused on a regime relevant to direct-drive ICF parameters at the National Ignition Facility, and it also covers a range of key parameters that are relevant to other ICF designs and hydrodynamic/astrophysical scenarios.
Natural infection by Trichinella sp. has been reported in humans and more than 150 species of animals, especially carnivorous and omnivorous mammals. Although the presence of Trichinella sp. infection in wild boars (Sus scrofa) has been documented worldwide, limited information is known about Trichinella circulation in farmed wild boars in China. This study intends to investigate the prevalence of Trichinella sp. in farmed wild boars in China. Seven hundred and sixty-one (761) muscle samples from farmed wild boars were collected in Jilin Province of China from 2017 to 2020. The diaphragm muscles were examined by artificial digestion method. The overall prevalence of Trichinella in farmed wild boars was 0.53% [95% confidence interval (CI): 0.51–0.55]. The average parasite loading was 0.076 ± 0.025 larvae per gram (lpg), and the highest burden was 0.21 lpg in a wild boar from Fusong city. Trichinella spiralis was the only species identified by multiplex polymerase chain reaction. The 5S rDNA inter-genic spacer region of Trichinella was amplified and sequenced. The results showed that the obtained sequence (GenBank accession number: OQ725583) shared 100% identity with the T. spiralis HLJ isolate (GenBank accession number: MH289505). Since the consumption of farmed wild boars is expected to increase in the future, these findings highlight the significance of developing exclusive guidelines for the processing of slaughtered farmed wild boar meat in China.
This study aimed to investigate the effects of esketamine (Esk) combined with dexmedetomidine (Dex) on postoperative delirium (POD) and quality of recovery (QoR) in elderly patients undergoing thoracoscopic radical lung cancer surgery.
Methods
In this prospective, randomized, and controlled study, 172 elderly patients undergoing thoracoscopic radical lung cancer surgery were divided into two groups: the Esk + Dex group (n = 86) and the Dex group a (n = 86). The primary outcome was the incidence of POD within 7 days after surgery and the overall Quality of Recovery−15 (QoR − 15) scores within 3 days after surgery. Secondary outcomes included postoperative adverse reactions, extubation time, PACU stay, and hospitalization time. Serum levels of IL-6, IL-10, S100β protein, NSE, CD3+, CD4+, and CD8+ were detected from T0 to T5.
Results
Compared with the Dex group, the incidence of POD in the Esk + Dex group was significantly lower at 7 days after surgery (14.6% vs 30.9%; P = 0.013). The QoR − 15 score was significantly increased 3 days after surgery (P < 0.01). Levels of IL-6 and CD8+ were significantly decreased, and IL − 10 levels were significantly increased at T1-T2 (P < 0.05). At T1-T4, NSE levels were significantly decreased, while CD3+ and CD4+/CD8+ values were significantly increased (P < 0.01). At T1-T5, serum S100β protein concentration decreased significantly, and CD4+ value increased significantly (P < 0.01). The incidence of nausea/vomiting and hyperalgesia decreased significantly 48 hours after surgery (P < 0.01). The duration of extubation, PACU stay, and postoperative hospitalization were significantly shortened.
Conclusions
Esketamine combined with dexmedetomidine can significantly reduce the POD incidence and improve the QoR in patients undergoing thoracoscopic radical lung cancer surgery, which may be related to the improvement of cellular immune function.
Accurately converting satellite instantaneous evapotranspiration (λETi) over time to daily evapotranspiration (λETd) is crucial for estimating regional evapotranspiration from remote sensing satellites, which plays an important role in effective water resource management. In this study, four upscaling methods based on the principle of energy balance, including the evaporative fraction method (Eva-f method), revised evaporative fraction method (R-Eva-f method), crop coefficient method (Kc-ET0 method) and direct canopy resistance method (Direct-rc method), were validated based on the measured data of the Bowen ratio energy balance system (BREB) in maize fields in northwestern (NW) and northeastern (NE) China (semi-arid and semi-humid continental climate regions) from 2021 to 2023. Results indicated that Eva-f and R-Eva-f methods were superior to Kc-ET0 and Direct-rc methods in both climatic regions and performed better between 10:00 and 11:00, with mean absolute errors (MAE) and coefficient of efficiency (ɛ) reaching <10 W/m2 and > 0.91, respectively. Comprehensive evaluation of the optimal upscaling time using global performance indicators (GPI) showed that the Eva-f method had the highest GPI of 0.59 at 12:00 for the NW, while the R-Eva-f method had the highest GPI of 1.18 at 11:00 for the NE. As a result, the Eva-f approach is recommended as the best way for upscaling evapotranspiration in NW, with 12:00 being the ideal upscaling time. The R-Eva-f method is the optimum upscaling method for the Northeast area, with an ideal upscaling time of 11:00. The comprehensive results of this study could be useful for converting λETi to λETd.
The formation and evolution of large-scale deposits generated by mass movement are often closely related to tectonic and climatic conditions. Investigating deposits under the influence of complex geological conditions can aid in reconstructing paleoenvironmental characteristics and fluvial geomorphic evolution. The First Bend of the Yangtze River (FBYR), located in the Jinsha River basin in southwest China, represents a significant section characterized by abundant allochthonous deposits. We conducted a detailed investigation of the Hongwen allochthonous deposit (HAD) and the river sediments in the First Bend. Through terrain interpretation, dating, and paleoenvironmental analysis, the HAD was determined to be a complex deposit with multiple sources and stages (46.4–33.5 ka), formed under the combined influence of tectonic activity and climate. Three mass-movement events occurred during the interglacial stage of the last glacial period or its transitional period, coinciding with the rapid uplift stage of the Tibetan Plateau since the late Pleistocene. Prominent features of this period include significant rainfall and tectonic activities. By dating fluvial sediments and examining the evolution of the HAD, we revealed a river incision rate of 2.30 mm/yr for the Jinsha River, providing a basis for analyzing periodic river cutting and the development pattern of surface processes.