We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Social support may protect against Alzheimer’s disease and related dementias (ADRD), potentially through emotional or instrumental support elements. Black and Hispanic/Latinx older adults bear a disproportionate burden of ADRD. However, independent effects of emotional and instrumental support on cognition, a primary indicator of ADRD risk, are largely understudied in these groups. Guided by the differential vulnerability hypothesis – the theoretical framework which posits that systemic racism disadvantages Black and Hispanic/Latinx individuals’ health – we hypothesize that emotional and instrumental support may be particularly important to protect against worse cognition for Black and Hispanic/Latinx older adults, who often have fewer resources due to these inequalities (e.g., wealth, educational opportunities) to otherwise maintain health. Using the NIH Toolbox Emotion Module measures of emotional (e.g., the extent to which individuals can rely on others in challenging times) and instrumental support (e.g., the extent to which individuals can rely on others for assistance in daily activities), we aimed to identify positive social support factors (i.e., emotional and instrumental support) that may protect against ADRD risk (i.e., longitudinal executive function and memory performance) among Black and Hispanic/Latinx older adults.
Participants and Methods:
Participants were 362 Black and 265 Hispanic/Latinx adults aged 65-89 (63% female, average age=75) from the Kaiser Healthy Aging and Diverse Life Experiences (KHANDLE) Study who completed baseline and up to two additional waves of assessments (every 1.5 years), including questionnaires, neuropsychological evaluations, and the NIH toolbox. Predictors included baseline covariates (i.e., age, language of test administration, gender, education, income, self-rated health) and NIH toolbox emotional and instrumental support variables. Outcomes were baseline and longitudinal memory (visual and verbal episodic memory) and executive functioning (verbal fluency and working memory) composites from the Spanish and English Neuropsychological Assessment Scales (SENAS). Latent growth curve models were conducted separately in Black and Hispanic/Latinx participants to estimate effects of emotional and instrumental support on baseline cognition and subsequent change in each domain.
Results:
Black participants reported greater emotional support. There were no group differences in levels of instrumental support. Greater instrumental support was associated with better initial memory (standardized β= .194, 95%CI: [.063, .325]) among Black participants but not among Hispanic/Latinx participants. In Hispanic/Latinx participants, greater emotional support was associated with better initial executive functioning (standardized β= .215, 95%CI: [.079, .350]. Emotional support was not associated with either cognitive domain in Black participants. There were no associations between emotional or instrumental support on cognitive change in either group.
Conclusions:
Results point to differences between Black and Hispanic/Latinx older adults in the impact of specific aspects of social support on different cognitive domains. Positive associations between instrumental support and baseline memory in Black participants and between emotional support and executive functioning in Hispanic/Latinx participants suggest unique cognitive consequences of social support across groups. Differences in the role of specific types of social supports may be useful in identifying intervention targets specifically for Black and Hispanic/Latinx older adults, who are disproportionately affected by ADRD. Future research will examine these constructs using multiple group models to test these associations more rigorously.
The U.S. Department of Agriculture–Agricultural Research Service (USDA-ARS) has been a leader in weed science research covering topics ranging from the development and use of integrated weed management (IWM) tactics to basic mechanistic studies, including biotic resistance of desirable plant communities and herbicide resistance. ARS weed scientists have worked in agricultural and natural ecosystems, including agronomic and horticultural crops, pastures, forests, wild lands, aquatic habitats, wetlands, and riparian areas. Through strong partnerships with academia, state agencies, private industry, and numerous federal programs, ARS weed scientists have made contributions to discoveries in the newest fields of robotics and genetics, as well as the traditional and fundamental subjects of weed–crop competition and physiology and integration of weed control tactics and practices. Weed science at ARS is often overshadowed by other research topics; thus, few are aware of the long history of ARS weed science and its important contributions. This review is the result of a symposium held at the Weed Science Society of America’s 62nd Annual Meeting in 2022 that included 10 separate presentations in a virtual Weed Science Webinar Series. The overarching themes of management tactics (IWM, biological control, and automation), basic mechanisms (competition, invasive plant genetics, and herbicide resistance), and ecosystem impacts (invasive plant spread, climate change, conservation, and restoration) represent core ARS weed science research that is dynamic and efficacious and has been a significant component of the agency’s national and international efforts. This review highlights current studies and future directions that exemplify the science and collaborative relationships both within and outside ARS. Given the constraints of weeds and invasive plants on all aspects of food, feed, and fiber systems, there is an acknowledged need to face new challenges, including agriculture and natural resources sustainability, economic resilience and reliability, and societal health and well-being.
The rat model of prenatal restraint stress (PRS) is particularly valuable to study the mechanisms involved in the pathophysiology of anxiety/depression since adult PRS rats show endocrine and behavioral abnormalities that are corrected by antidepressant medication. We have previously shown that agomelatine chronic treatment reversed the anxiety behaviour and decreased hippocampal neurogenesis observed in PRS. Here, we investigated the mechanisms that may contribute to the antidepressant activity of agomelatine, by assessing the effects of a chronic treatment with agomelatine on neurobiological markers of neuroplasticity in the rat hippocampus such as BDNF and its receptor, TrkB, the transcription factor pCREB and metabotrophic glutamate receptors (mGluRs). Adult SD control and PRS rats were treated chronically with agomelatine (40mg/kg ip) or vehicle. 16h after last drug administration, animals were sacrificed and hippocampus dissected for biochemical analysis.
PRS animals showed reduced levels of pCREB in the hippocampus and increased hippocampal BDNF, and TrkB receptor levels. Agomelatine reversed changes in pCREB and BDNF/TrkB levels in PRS rats, had no effect on pCREB in control rats, and, interestingly, increased BDNF and TrkB receptor levels in control rats. Moreover, agomelatine reversed the reduced expression (for mGluR5 and mGluR2/3 receptors) and function (for mgluR5 receptor) observed in the hippocampus of PRS rats.
In conclusion, we have shown that agomelatine treatment reversed all biochemical and cellular changes induced by PRS in rats. These changes, independently of their direction, are the expression of an enduring maladaptive form of neuroplasticity that may contribute to the depressive/anxious phenotype of PRS rats.
Postoperative cognitive impairment is among the most common medical complications associated with surgical interventions – particularly in elderly patients. In our aging society, it is an urgent medical need to determine preoperative individual risk prediction to allow more accurate cost–benefit decisions prior to elective surgeries. So far, risk prediction is mainly based on clinical parameters. However, these parameters only give a rough estimate of the individual risk. At present, there are no molecular or neuroimaging biomarkers available to improve risk prediction and little is known about the etiology and pathophysiology of this clinical condition. In this short review, we summarize the current state of knowledge and briefly present the recently started BioCog project (Biomarker Development for Postoperative Cognitive Impairment in the Elderly), which is funded by the European Union. It is the goal of this research and development (R&D) project, which involves academic and industry partners throughout Europe, to deliver a multivariate algorithm based on clinical assessments as well as molecular and neuroimaging biomarkers to overcome the currently unsatisfying situation.
Space Infrared Telescope for Cosmology and Astrophysics (SPICA), the cryogenic infrared space telescope recently pre-selected for a ‘Phase A’ concept study as one of the three remaining candidates for European Space Agency (ESA's) fifth medium class (M5) mission, is foreseen to include a far-infrared polarimetric imager [SPICA-POL, now called B-fields with BOlometers and Polarizers (B-BOP)], which would offer a unique opportunity to resolve major issues in our understanding of the nearby, cold magnetised Universe. This paper presents an overview of the main science drivers for B-BOP, including high dynamic range polarimetric imaging of the cold interstellar medium (ISM) in both our Milky Way and nearby galaxies. Thanks to a cooled telescope, B-BOP will deliver wide-field 100–350 $\mu$m images of linearly polarised dust emission in Stokes Q and U with a resolution, signal-to-noise ratio, and both intensity and spatial dynamic ranges comparable to those achieved by Herschel images of the cold ISM in total intensity (Stokes I). The B-BOP 200 $\mu$m images will also have a factor $\sim $30 higher resolution than Planck polarisation data. This will make B-BOP a unique tool for characterising the statistical properties of the magnetised ISM and probing the role of magnetic fields in the formation and evolution of the interstellar web of dusty molecular filaments giving birth to most stars in our Galaxy. B-BOP will also be a powerful instrument for studying the magnetism of nearby galaxies and testing Galactic dynamo models, constraining the physics of dust grain alignment, informing the problem of the interaction of cosmic rays with molecular clouds, tracing magnetic fields in the inner layers of protoplanetary disks, and monitoring accretion bursts in embedded protostars.
Giardiasis is one of the most important non-viral causes of human diarrhoea. Yet, little is known about the epidemiology of giardiasis in the context of developed countries such as Australia and there is a limited information about local sources of exposure to inform prevention strategies in New South Wales. This study aimed to (1) describe the epidemiology of giardiasis and (2) identify potential modifiable risk factors associated with giardiasis that are unique to south-western Sydney, Australia. A 1:2 matched case-control study of 190 confirmed giardiasis cases notified to the South-Western Local Health District Public Health Unit from January to December 2016 was employed to investigate the risk factors for giardiasis. Two groups of controls were selected to increase response rate; Pertussis cases and neighbourhood (NBH) controls. A matched analysis was carried out for both control groups separately. Variables with a significant odds ratio (OR) in the univariate analysis were placed into a multivariable regression for each matched group, respectively. In the regression model with the NBH controls, age and sex were controlled as potential confounders. Identified risk factors included being under 5 years of age (aOR = 7.08; 95% confidence intervals (CI) 1.02–49.36), having a household member diagnosed with a gastrointestinal illness (aOR = 15.89; 95% CI 1.53–164.60) and having contact with farm animals, domestic animals or wildlife (aOR = 3.03; 95% CI 1.08–8.54). Cases that travelled overseas were at increased risk of infection (aOR = 19.89; 95% CI 2.00–197.37) when compared with Pertussis cases. This study provides an update on the epidemiology and associated risk factors of a neglected tropical disease, which can inform enhanced surveillance and prevention strategies in the developed metropolitan areas.
The predictions of mean-field electrodynamics can now be probed using direct numerical simulations of random flows and magnetic fields. When modelling astrophysical magnetohydrodynamics, it is important to verify that such simulations are in agreement with observations. One of the main challenges in this area is to identify robust quantitative measures to compare structures found in simulations with those inferred from astrophysical observations. A similar challenge is to compare quantitatively results from different simulations. Topological data analysis offers a range of techniques, including the Betti numbers and persistence diagrams, that can be used to facilitate such a comparison. After describing these tools, we first apply them to synthetic random fields and demonstrate that, when the data are standardized in a straightforward manner, some topological measures are insensitive to either large-scale trends or the resolution of the data. Focusing upon one particular astrophysical example, we apply topological data analysis to H i observations of the turbulent interstellar medium (ISM) in the Milky Way and to recent magnetohydrodynamic simulations of the random, strongly compressible ISM. We stress that these topological techniques are generic and could be applied to any complex, multi-dimensional random field.
A study of the ion-exchange properties of montmorillonite has been performed in order to facilitate computer predictions of the chemical properties of natural fluids and mineral assemblies. Clay/electrolyte interactions can be described using a technique based on the concept of hypothetical surface complex formation. This technique, which is compatible with ion-association models such as GEOCHEM, can be used to simulate simultaneous ion-exchange, hydrolysis of clay edges and anion adsorption on clay surfaces. Effects such as variable cation-exchange capacity and compositionally dependent exchange constants, normally indicating non-ideal behaviour, can be simulated using different combinations of ideal reactions involving charged surfaces and complexing groups representing clay edges. The modelling procedures are flexible and thermodynamically self-consistent. The techniques were applied to data on the ion-exchange characteristics of Wyoming bentonite to yield thermodynamic data for the reactivity of this clay with alkali metals, alkaline earths and a range of first-row transition metals at 25°C.
When discs of red beet (Beta vulgaris L.) root were immersed in various concentrations of glyphosate [N-(phosphonomethyl)glycine] either in phosphate (pH 6.8) or citrate (pH 6.2) buffer, no efflux of betacyanin occurred even after 1 week. This suggests that glyphosate had little or no effect on membrane permeability. When beet discs were immersed in distilled water containing glyphosate, the betacyanin efflux increased with time and concentration. Measurement of pH indicated that the solutions were strongly acidic at first, but tended to approach a pH of 6.0 over 8 h, after which time betacyanin efflux slowed down or stopped. The tissue was able to buffer the solutions sufficiently to prevent further efflux. When tissue discs were immersed in a series of citrate buffer ranging from pH 3 to 6.2, efflux occurred at pH 3 and slightly at pH 6.2. Efflux was not altered significantly with the addition of glyphosate.
A plausible mechanism underlying flavonoid-associated cognitive effects is increased cerebral blood flow (CBF). However, behavioural and CBF effects following flavanone-rich juice consumption have not been explored. The aim of this study was to investigate whether consumption of flavanone-rich juice is associated with acute cognitive benefits and increased regional CBF in healthy, young adults. An acute, single-blind, randomised, cross-over design was applied with two 500-ml drink conditions – high-flavanone (HF; 70·5 mg) drink and an energy-, and vitamin C- matched, zero-flavanone control. A total of twenty-four healthy young adults aged 18–30 years underwent cognitive testing at baseline and 2-h after drink consumption. A further sixteen, healthy, young adults were recruited for functional MRI assessment, whereby CBF was measured with arterial spin labelling during conscious resting state at baseline as well as 2 and 5 h after drink consumption. The HF drink was associated with significantly increased regional perfusion in the inferior and middle right frontal gyrus at 2 h relative to baseline and the control drink. In addition, the HF drink was associated with significantly improved performance on the Digit Symbol Substitution Test at 2 h relative to baseline and the control drink, but no effects were observed on any other behavioural cognitive tests. These results demonstrate that consumption of flavanone-rich citrus juice in quantities commonly consumed can acutely enhance blood flow to the brain in healthy, young adults. However, further studies are required to establish a direct causal link between increased CBF and enhanced behavioural outcomes following citrus juice ingestion.
Recent spectropolarimetric surveys of bright, hot stars have found that ~10% of OB-type stars contain strong (mostly dipolar) surface magnetic fields (~kG). The prominent paradigm describing the interaction between the stellar winds and the surface magnetic field is the magnetically confined wind shock (MCWS) model. In this model, the stellar wind plasma is forced to move along the closed field loops of the magnetic field, colliding at the magnetic equator, and creating a shock. As the shocked material cools radiatively it will emit X-rays. Therefore, X-ray spectroscopy is a key tool in detecting and characterizing the hot wind material confined by the magnetic fields of these stars. Some B-type stars are found to have very short rotational periods. The effects of the rapid rotation on the X-ray production within the magnetosphere have yet to be explored in detail. The added centrifugal force due to rapid rotation is predicted to cause faster wind outflows along the field lines, leading to higher shock temperatures and harder X-rays. However, this is not observed in all rapidly rotating magnetic B-type stars. In order to address this from a theoretical point of view, we use the X-ray Analytical Dynamical Magnetosphere (XADM) model, originally developed for slow rotators, with an implementation of new rapid rotational physics. Using X-ray spectroscopy from ESA’s XMM-Newton space telescope, we observed 5 rapidly rotating B-types stars to add to the previous list of observations. Comparing the observed X-ray luminosity and hardness ratio to that predicted by the XADM allows us to determine the role the added centrifugal force plays in the magnetospheric X-ray emission of these stars.
The Cambrian fauna of Massachusetts, characterized by Paradoxides (Hydrocephalus) harlani, is poorly preserved. Better-preserved specimens, occurring within the stratigraphic range of this trilobite in southeastern Newfoundland and Morocco, provide a better understanding of such taxa to widen the scope of correlation. The paradoxidid-bearing Braintree Formation has revealed three trilobite species to add to those recently recorded. They represent Ellipsocephaloidea not previously recognized in this Massachusetts sequence, namely Protoleninae by Hamatolenus (H.) aff. H. (H.) marocanus and H. (Myopsolenus) aff. H. (M.) magnus and Ellipsocephalidae by Holocephalina aff. H. levis, thus strengthening faunal relationships with midshelf Cambrian sequences in Morocco and Spain. Reinterpretations of Agnostida, based on Newfoundland material associated with P. (Hydrocephalus) harlani, indicate that Condylopyge eli and Kiskinella cf. K. cristata signify a stratigraphic position for part of the Massachusetts sequence a little above the first appearance of Ovatoryctocara granulata. Appearance of this latter species is under review as the basal boundary of a global Cambrian stage, and is below the sequence break within the Chamberlain's Brook Formation in Newfoundland marked by the Easter Cove Blister Bed. The problem of differentiating species with numerous variable growth stages is highlighted in the ontogenies and stratigraphic ranges of P. (H.) harlani and P. (Plutonides) haywardi and emphasizes the importance of cephalic morphology in paradoxidid classification. Details of the holotypes of Agraulos quadrangularis and Braintreella rogersi and Czech topotypes of Agraulos ceticephalus supplement generic and specific characters poorly understood, especially those involving proportional differences between tectonically/taphonomically flattened examples and undistorted high-relief specimens.
During 1990 we surveyed the southern sky using a multi-beam receiver at frequencies of 4850 and 843 MHz. The half-power beamwidths were 4 and 25 arcmin respectively. The finished surveys cover the declination range between +10 and −90 degrees declination, essentially complete in right ascension, an area of 7.30 steradians. Preliminary analysis of the 4850 MHz data indicates that we will achieve a five sigma flux density limit of about 30 mJy. We estimate that we will find between 80 000 and 90 000 new sources above this limit. This is a revised version of the paper presented at the Regional Meeting by the first four authors; the surveys now have been completed.
Western legal systems diverge radically in their approaches to setting limits on the privilege of self-defence. Some systems incline to the view that a person defending his or another life or property may use all the force necessary to stifle an aggressive attack. Taken to the extreme, this means that if there is no other way to apprehend a thief escaping with a petty bounty, one may shoot him—if necessary, shoot to kill. In contrast to this approach, which is adverse to limits on the use of necessary force, another set of Western jurisdictions insists that the degree of force meet two desiderata: it must be both necessary and proportional to the interest protected. The requirement of proportionality or reasonableness means that there are some cases, like petty thievery, where the cost of protecting a threatened interest may be so great that one must surrender the interest rather than inflict grievous harm on the aggressor.