We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Adolescents who experience bereavement following suicide are at increased risk for adverse outcomes, including depression. However, there is limited research on the heterogeneity of depressive symptoms or its long-term course among this population. Using a self-reported 3-item version of the Center for Epidemiologic Studies Depression Scale (CES-D) administered across five waves spanning from adolescence to adulthood (1994–2018, with intervals of 1, 5, 7, and 9 years), we identified trajectories of depressive symptoms over a 24-year span in a sample of adolescents (n = 236) who reported at baseline having lost a family member or friend to suicide in the last 12 months. We identified three distinct depressive symptom trajectories: Stable low symptoms (77.5%), initially high but gradually declining symptoms (16.9%), and initially low but gradually increasing symptoms (5.5%). Race, neuroticism, sleep quality, and age were significant predictors that differentiated membership among the three trajectory groups. Implications for developing personalized assessment and intervention are discussed.
Psychostimulants and nonstimulants have partially overlapping pharmacological targets on attention-deficit/hyperactivity disorder (ADHD), but whether their neuroimaging underpinnings differ is elusive. We aimed to identify overlapping and medication-specific brain functional mechanisms of psychostimulants and nonstimulants on ADHD.
Methods
After a systematic literature search and database construction, the imputed maps of separate and pooled neuropharmacological mechanisms were meta-analyzed by Seed-based d Mapping toolbox, followed by large-scale network analysis to uncover potential coactivation patterns and meta-regression analysis to examine the modulatory effects of age and sex.
Results
Twenty-eight whole-brain task-based functional MRI studies (396 cases in the medication group and 459 cases in the control group) were included. Possible normalization effects of stimulant and nonstimulant administration converged on increased activation patterns of the left supplementary motor area (Z = 1.21, p < 0.0001, central executive network). Stimulants, relative to nonstimulants, increased brain activations in the left amygdala (Z = 1.30, p = 0.0006), middle cingulate gyrus (Z = 1.22, p = 0.0008), and superior frontal gyrus (Z = 1.27, p = 0.0006), which are within the ventral attention network. Neurodevelopmental trajectories emerged in activation patterns of the right supplementary motor area and left amygdala, with the left amygdala also presenting a sex-related difference.
Conclusions
Convergence in the left supplementary motor area may delineate novel therapeutic targets for effective interventions, and distinct neural substrates could account for different therapeutic responses to stimulants and nonstimulants.
McCullough and Trent generalize Beurling–Lax–Halmos invariant subspace theorem for the shift on Hardy space of the unit disk to the multi-shift on Drury–Arveson space of the unit ball by representing an invariant subspace of the multi-shift as the range of a multiplication operator that is a partial isometry. By using their method, we obtain similar representations for a class of invariant subspaces of the multi-shifts on Hardy and Bergman spaces of the unit ball or polydisk. Our results are surprisingly general and include several important classes of invariant subspaces on the unit ball or polydisk.
Following the 2020 cardiopulmonary resuscitation (CPR) guidelines, this study compared participant’s fatigue with the quality of manual chest compressions performed in the head-up CPR (HUP-CPR) and supine CPR (SUP-CPR) positions for two minutes on a manikin.
Methods:
Both HUP-CPR and SUP-CPR were performed in a randomized order determined by a lottery-style draw. Manual chest compressions were then performed continuously on a realistic manikin for two minutes in each position, with a 30-minute break between each condition. Data were collected on heart rate, blood pressure, and Borg rating of perceived exertion (RPE) scale scores from the participants before and after the compressions.
Results:
Mean chest compression depth (MCCD), mean chest compression rate (MCCR), accurate chest compression depth ratio (ACCDR), and correct hand position ratio were significantly lower in the HUP group than that in the SUP group. However, there were no significant differences in accurate chest compression rate ratio (ACCRR), correct recoil ratio, or mean arterial pressure (MAP) before and after chest compressions between the two groups. Changes in heart rate and RPE scores were greater in the HUP group.
Conclusion:
High-quality manual chest compressions can still be performed when the CPR manikin is placed in the HUP position. However, the quality of chest compressions in the HUP position was poorer than those in the SUP position, and rescuer fatigue was increased.
The high-power narrow-linewidth fiber laser has become the most widely used high-power laser source nowadays. Further breakthroughs of the output power depend on comprehensive optimization of stimulated Brillouin scattering (SBS), stimulated Raman scattering (SRS) and transverse mode instability (TMI). In this work, we aim to further surpass the power record of all-fiberized and narrow-linewidth fiber amplifiers with near-diffraction-limited (NDL) beam quality. SBS is suppressed by white-noise-signal modulation of a single-frequency seed. In particular, the refractive index of the large-mode-area active fiber in the main amplifier is controlled and fabricated, which could simultaneously increase the effective mode field area of the fundamental mode and the loss coefficient of higher-order modes for balancing SRS and TMI. Subsequent experimental measurements demonstrate a 7.03 kW narrow-linewidth fiber laser with a signal-to-noise ratio of 31.4 dB and beam quality factors of Mx2 = 1.26, My2 = 1.25. To the best of our knowledge, this is the highest reported power with NDL beam quality based on a directly laser-diode-pumped and all-fiberized format, especially with narrow-linewidth spectral emission.
Despite mounting evidence linking neurological diseases with climate change, the link between autism spectrum disorder (ASD) and global warming has yet to be explored.
Aims
To examine the relationship between the incidence of ASD and global warming from 1990 to 2019 and estimate the trajectory of ASD incidence from 2020 to 2100 globally.
Method
We extracted meteorological data from TerraClimate between 1990 and 2019. To estimate the association between global ASD incidence and temperature variation, we adopted a two-stage analysis strategy using a generalised additive regression model. Additionally, we projected future ASD incidence under four representative shared socioeconomic pathways (SSPs: 126, 245, 370 and 585) by bootstrapping.
Results
Between 1990 and 2019, the global mean incidence of ASD in children under 5 years old was 96.9 per 100 000. The incidence was higher in males (147.5) than in females (46.3). A 1.0 °C increase in the temperature variation was associated with a 3.0% increased risk of ASD incidence. The association was stronger in boys and children living in a low/low-middle sociodemographic index region, as well as in low-latitude areas. According to the SSP585 scenario, by 2100, the children living in regions between 10 and 20° latitude, particularly in Africa, will experience a 68.6% increase in ASD incidence if the association remains. However, the SSP126 scenario is expected to mitigate this increase, with a less than 10% increase in incidence across all latitudes.
Conclusions
Our study highlights the association between climate change and ASD incidence worldwide. Prospective studies are warranted to confirm the association.
This paper systematically investigated the impact mechanisms of proton irradiation, atomic oxygen irradiation and space debris collision, both individually and in combination, on the laser damage threshold and damage evolution characteristics of HfO2/SiO2 triple-band high-reflection films and fused silica substrates using a simulated near-Earth space radiation experimental system. For the high-reflection film samples, the damage thresholds decreased by 15.38%, 13.12% and 46.80% after proton, atomic oxygen and simulated space debris (penetration) irradiation, respectively. The coupling irradiation of the first two factors resulted in a decrease of 26.93%, while the combined effect of all the three factors led to a reduction of 63.19%. Similarly, the fused silica substrates exhibited the same pattern of laser damage performance degradation. Notably, the study employed high-precision fixed-point in situ measurement techniques to track in detail the microstructural changes, surface roughness and optical-thermal absorption intensity before and after proton and atomic oxygen irradiation at the same location, thus providing a more accurate and comprehensive analysis of the damage mechanisms. In addition, simulations were conducted to quantitatively analyze the transmission trajectories and concentration distribution lines of protons and atomic oxygen incident at specific angles into the target material. The research findings contribute to elucidating the laser damage performance degradation mechanism of transmissive elements in near-Earth space environments and provide technical support for the development of high-damage-threshold optical components resistant to space radiation.
To meet the demands of laser-ion acceleration at a high repetition rate, we have developed a comprehensive diagnostic system for real-time and in situ monitoring of liquid sheet targets (LSTs). The spatially resolved rapid characterizations of an LST’s thickness, flatness, tilt angle and position are fulfilled by different subsystems with high accuracy. With the help of the diagnostic system, we reveal the dependence of thickness distribution on collision parameters and report the 238-nm liquid sheet generated by the collision of two liquid jets. Control methods for the flatness and tilt angle of LSTs have also been provided, which are essential for applications of laser-driven ion acceleration and others.
Here, we report the generation of MeV alpha-particles from H-11B fusion initiated by laser-accelerated boron ions. Boron ions with maximum energy of 6 MeV and fluence of 109/MeV/sr@5 MeV were generated from 60 nm-thick self-supporting boron nanofoils irradiated by 1 J femtosecond pulses at an intensity of 1019 W/cm2. By bombarding secondary hydrogenous targets with the boron ions, 3 × 105/sr alpha-particles from H-11B fusion were registered, which is consistent with the theoretical yield calculated from the measured boron energy spectra. Our results demonstrated an alternative way toward ultrashort MeV alpha-particle sources employing compact femtosecond lasers. The ion acceleration and product measurement scheme are referential for the studies on the ion stopping power and cross section of the H-11B reaction in solid or plasma.
To evaluate the mental health of paediatric cochlear implant users and analyse the relationship between six dimensions (movements, cognitive ability, emotion and will, sociality, living habits and language) and hearing and speech rehabilitation.
Methods
Eighty-two cochlear implant users were assessed using the Mental Health Survey Questionnaire. Age at implantation, time of implant use and listening modes were investigated. Categories of Auditory Performance and the Speech Intelligibility Rating Scale were used to score hearing and speech abilities.
Results
More recipients scored lower in cognitive ability and language. Age at implantation was statistically significant (p < 0.05) for movements, cognitive ability, emotion and will, and language. The time of implant usage and listening mode indicated statistical significance (p < 0.05) in cognitive ability, sociality and language.
Conclusion
Timely attention should be paid to the mental health of paediatric cochlear implant users, and corresponding psychological interventions should be implemented to make personalised rehabilitation plans.
During the COVID-19 pandemic, there was an increase in online gaming behaviour among college students. This study aimed to examine the impact of online self-help interventions consisting of different components within the Acceptance and Commitment Therapy (ACT) framework on college students’ gaming disorder and gaming frequency. Additionally, it evaluated the effectiveness of both interventions in addressing psychological distress among college students during the COVID-19 pandemic. One intervention was a full ACT program, which consists of six core components, while the other intervention focused on the engaged components of ACT (specifically targeting value-based actions). The study employed a 2 conditions (Full ACT vs. Engaged ACT) × 3 times (pre-, mid- and post-program) design to examine the effectiveness of these interventions. Each intervention consisted of 10 sessions, delivered at a frequency of five sessions per week over a 2-week period for both groups. The participants in this study were enrolled in two online classes. Participants with gaming disorder scores in the top 20% were selected and assigned to either the Full group (N = 49) or the Engaged group (N = 41) for the interventions. The study assessed outcome variables, including gaming disorder, psychological flexibility, daily gaming hours, weekly gaming days and psychological distress, at pre-intervention, mid-intervention, post-intervention and one-month follow-up for both groups. No significant differences were observed between the two groups on these outcomes at the pre-intervention stage. The findings of this study indicate that both interventions effectively reduced gaming disorder and weekly gaming frequency, while enhancing psychological flexibility. Nonetheless, the Engaged group exhibited a significant reduction in daily gaming hours. There was no substantial change in psychological distress in either group during and after the intervention. The implications and limitations of this study were also reported.
Post-acceleration of protons in helical coil targets driven by intense, ultrashort laser pulses can enhance ion energy by utilizing the transient current from the targets’ self-discharge. The acceleration length of protons can exceed a few millimeters, and the acceleration gradient is of the order of GeV/m. How to ensure the synchronization between the accelerating electric field and the protons is a crucial problem for efficient post-acceleration. In this paper, we study how the electric field mismatch induced by current dispersion affects the synchronous acceleration of protons. We propose a scheme using a two-stage helical coil to control the current dispersion. With optimized parameters, the energy gain of protons is increased by four times. Proton energy is expected to reach 45 MeV using a hundreds-of-terawatts laser, or more than 100 MeV using a petawatt laser, by controlling the current dispersion.
In strong-field physics experiments with ultraintense lasers, a single-shot cross-correlator (SSCC) is essential for fast optimization of the pulse contrast and meaningful comparison with theory for each pulse shot. To simultaneously characterize an ultrashort pulse and its long pedestal, the SSCC device must have both a high resolution and a large temporal window. However, the resolution and window in all kinds of single-shot measurement contradict each other in principle. Here we propose and demonstrate a novel SSCC device with two separate measurement channels: channel-1 for the large-window pedestal measurement has a moderate resolution but a large window, while channel-2 for the ultrashort pulse measurement has a small window but a high resolution; this allows the accurate characterization of the pulse contrast in a single shot. A two-channel SSCC device with a 200-fs resolution and 114-ps window has been developed and tested for its application in ultraintense lasers at 800 nm.
In Wang & Pan (J. Fluid Mech., vol. 918, 2021, A19), the authors developed the first ensemble-based data assimilation (DA) capability for the reconstruction and forecast of ocean surface waves, namely the EnKF-HOS method coupling an ensemble Kalman filter (EnKF) and the high-order spectral (HOS) method. In this work, we continue to enrich the method by allowing it to simultaneously estimate the ocean current field, which is in general not known a priori and can (slowly) vary in both space and time. To achieve this goal, we incorporate the effect of ocean current (as unknown parameters) on waves to build the HOS-C method as the forward prediction model, and obtain a simultaneous estimation of (current) parameters and (wave) states via an iterative EnKF (IEnKF) method that is necessary to handle the complexity in this DA problem. The new algorithm, named the IEnKF-HOS-C method, is first tested in synthetic problems with various forms (steady/unsteady, uniform/non-uniform) of current. It is shown that the IEnKF-HOS-C method is able to not only estimate the current field accurately, but also boost the prediction accuracy of the wave field (even) relative to the state-of-the-art EnKF-HOS method. Finally, using real data from a shipborne radar, we show that the IEnKF-HOS-C method successfully recovers the current speed that matches the in situ measurement by a floating buoy.
The poultry red mite (PRM), Dermanyssus gallinae, is one of the most detrimental ectoparasite on poultry farms worldwide. The blood fed on birds provides the mites with nutrition and energy for their activities, development and reproduction. In the evaluation of the efficacy of novel drugs or vaccines against PRMs, their effects on blood digestion are generally used as a key parameter. The blood digestion of haematophagous arthropods (including D. gallinae) is usually assessed by weighing; however, this method shows some limitations. The main objective of the present study was to develop a scoring method that can quickly and visually evaluate the blood digestion status of PRMs. A 0–4 point scoring criterion was established to describe the blood digestion status of D. gallinae based on the changes in appearance in the intestinal tract of PRMs during the blood digestion process. There was a good consistency between the results obtained by the blood digestion scoring and the weighing, indicating the reliability of this new method. The results obtained from volunteers were consistent with the results from researchers with low coefficient of variation, indicating that the scoring method has good practicability. The applicability of the scoring method was confirmed in an efficacy study, where it was found that doramectin could significantly inhibit the blood digestion of PRMs, lowering the blood digestion score.
The quantum defect (QD) is an important issue that demands prompt attention in high-power fiber lasers. A large QD may aggravate the thermal load in the laser, which would impact the frequency, amplitude noise and mode stability, and threaten the security of the high-power laser system. Here, we propose and demonstrate a cladding-pumped Raman fiber laser (RFL) with QD of less than 1%. Using the Raman gain of the boson peak in a phosphorus-doped fiber to enable the cladding pump, the QD is reduced to as low as 0.78% with a 23.7 W output power. To our knowledge, this is the lowest QD ever reported in a cladding-pumped RFL. Furthermore, the output power can be scaled to 47.7 W with a QD of 1.29%. This work not only offers a preliminary platform for the realization of high-power low-QD fiber lasers, but also proves the great potential of low-QD fiber lasers in power scaling.
Sarcopenic obesity is regarded as a risk factor for the progression and development of non-alcoholic fatty liver disease (NAFLD). Since male sex is a risk factor for NAFLD and skeletal muscle mass markedly varies between the sexes, we examined whether sex influences the association between appendicular skeletal muscle mass to visceral fat area ratio (SVR), that is, an index of skeletal muscle mass combined with abdominal obesity, and the histological severity of NAFLD. The SVR was measured by bioelectrical impedance in a cohort of 613 (M/F = 443/170) Chinese middle-aged individuals with biopsy-proven NAFLD. Multivariable logistic regression and subgroup analyses were used to test the association between SVR and the severity of NAFLD (i.e. non-alcoholic steatohepatitis (NASH) or NASH with the presence of any stage of liver fibrosis). NASH was identified by a NAFLD activity score ≥5, with a minimum score of 1 for each of its categories. The presence of fibrosis was classified as having a histological stage ≥1. The SVR was inversely associated with NASH in men (adjusted OR 0·62; 95 % CI 0·42, 0·92, P = 0·017 for NASH, adjusted OR 0·65; 95 % CI 0·43, 0·99, P = 0·043 for NASH with the presence of fibrosis), but not in women (1·47 (95 % CI 0·76, 2·83), P = 0·25 for NASH, and 1·45 (95 % CI 0·74, 2·83), P = 0·28 for NASH with the presence of fibrosis). There was a significant interaction for sex and SVR (Pinteraction = 0·017 for NASH and Pinteraction = 0·033 for NASH with the presence of fibrosis). Our findings show that lower skeletal muscle mass combined with abdominal obesity is strongly associated with the presence of NASH only in men.
Carbon nanotube foams (CNFs) have been successfully used as near-critical-density targets in the laser-driven acceleration of high-energy ions and electrons. Here we report the recent advances in the fabrication technique of such targets. With the further developed floating catalyst chemical vapor deposition (FCCVD) method, large-area ($>25\kern0.5em {\mathrm{cm}}^2$) and highly uniform CNFs are successfully deposited on nanometer-thin metal or plastic foils as double-layer targets. The density and thickness of the CNF can be controlled in the range of $1{-}13\kern0.5em \mathrm{mg}/{\mathrm{cm}}^3$ and $10{-}200\kern0.5em \mu \mathrm{m}$, respectively, by varying the synthesis parameters. The dependence of the target properties on the synthesis parameters and the details of the target characterization methods are presented for the first time.
Vitamin D (VD) has been reported to play multiple and significant roles in improving pig health via modulating calcium and phosphorus homeostasis, skeletal muscle development and the immune system. Apart from food, photochemical action of 7-dehydrocholesterol in the skin is the main source of this molecule for pigs. The VD from dietary intake or photosynthesized via skin can be absorbed into the liver for hydroxylation, and further hydroxylated into the hormone form of VD (1,25-dihydroxyvitamin D3 or 1,25(OH)2D3) in the kidney. As a sterol hormone, 1,25(OH)2D3 is able to bind with the VD receptor (VDR), and this ligand-receptor complex (VDR/retinoic X receptor) translocates from the cytoplasm into the nucleus to regulate gene expression, thus modulating metabolism. In this review, we summarized the recent studies regarding the non-skeletal health benefits of VD for pigs, and focused on the recent advances in the cellular and molecular mechanisms of VD that affects the immune system and reproductive health. This review provides a reference for future research and application of VD in pigs.
The FNDC5 gene encodes the fibronectin type III domain-containing protein 5 that is a membrane protein mainly expressed in skeletal muscle, and the FNDC5 rs3480 polymorphism may be associated with liver disease severity in non-alcoholic fatty liver disease (NAFLD). We investigated the influence of the FNDC5 rs3480 polymorphism on the relationship between sarcopenia and the histological severity of NAFLD. A total of 370 adult individuals with biopsy-proven NAFLD were studied. The association between the key exposure sarcopenia and the outcome liver histological severity was investigated by binary logistic regression. Stratified analyses were undertaken to examine the impact of FNDC5 rs3480 polymorphism on the association between sarcopenia and the severity of NAFLD histology. Patients with sarcopenia had more severe histological grades of steatosis and a higher prevalence of significant fibrosis and definite non-alcoholic steatohepatitis than those without sarcopenia. There was a significant association between sarcopenia and significant fibrosis (adjusted OR 2·79, 95 % CI 1·31, 5·95, P = 0·008), independent of established risk factors and potential confounders. Among patients with sarcopenia, significant fibrosis occurred more frequently in the rs3480 AA genotype carriers than in those carrying the FNDC5 rs3480 G genotype (43·8 v. 17·2 %, P = 0·031). In the association between sarcopenia and liver fibrosis, there was a significant interaction between the FNDC5 genotype and sarcopenia status (P value for interaction = 0·006). Sarcopenia is independently associated with significant liver fibrosis, and the FNDC5 rs3480 G variant influences the association between sarcopenia and liver fibrosis in patients with biopsy-proven NAFLD.