We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain volumes in commonly reported regions including the amygdala and hippocampus, regions associated with fear and memory processing. In the current study, we have conducted a voxel-based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroimaging data from the ENIGMA-PGC PTSD working group.
Methods
T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309; controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool). We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter (GM) and white matter (WM) volumes between PTSD patients and controls, performed subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results
PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008). We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum (pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in patients (pcorrected = .001).
Conclusions
PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.
Quantum field theory predicts a nonlinear response of the vacuum to strong electromagnetic fields of macroscopic extent. This fundamental tenet has remained experimentally challenging and is yet to be tested in the laboratory. A particularly distinct signature of the resulting optical activity of the quantum vacuum is vacuum birefringence. This offers an excellent opportunity for a precision test of nonlinear quantum electrodynamics in an uncharted parameter regime. Recently, the operation of the high-intensity Relativistic Laser at the X-ray Free Electron Laser provided by the Helmholtz International Beamline for Extreme Fields has been inaugurated at the High Energy Density scientific instrument of the European X-ray Free Electron Laser. We make the case that this worldwide unique combination of an X-ray free-electron laser and an ultra-intense near-infrared laser together with recent advances in high-precision X-ray polarimetry, refinements of prospective discovery scenarios and progress in their accurate theoretical modelling have set the stage for performing an actual discovery experiment of quantum vacuum nonlinearity.
Identify essential components of a curriculum on antimicrobial stewardship (AS) for pediatric residents.
Design:
Survey.
Setting:
Academic tertiary care children’s hospital.
Participants:
Pediatric residents and infectious diseases (ID)/AS content experts (CE), including pediatric ID faculty, fellows, nurse practitioners, and pharmacists.
Methods:
Residents were surveyed to assess prior AS experiences and usefulness of education in different AS domains (e.g., antimicrobial resistance [AMR]). CE was surveyed to identify content to include in an AS curriculum. A specific topic (e.g., resistance in Staphylococcus aureus) achieved consensus if ≥80% of CE identified the topic as “very” or “extremely” important.
Results:
Thirty-three of 110 pediatric residents responded to the resident survey (response rate 30%). Spectrum of activity (97%), empiric therapy (94%), and duration of therapy (94%) were the domains identified by the most residents as “very” or “extremely” useful. All CE responded to the CE survey (n=26). Thirty-nine of 105 topics (37%) met the consensus threshold. The domains with most topics achieving consensus were empiric therapy (11/13 topics, 85%) and duration of therapy (5/8 topics, 63%). Only one topic was identified within the domains of antibiotic allergies, diagnostics, and AMR, reflecting 18%, 14%, and 6% of the potential topics within each domain, respectively.
Conclusions:
A pediatric AS curriculum focused on empiric therapy and duration of therapy is likely to meet the needs of both learners and CEs.
Young stellar objects (YSOs) are protostars that exhibit bipolar outflows fed by accretion disks. Theories of the transition between disk and outflow often involve a complex magnetic field structure thought to be created by the disk coiling field lines at the jet base; however, due to limited resolution, these theories cannot be confirmed with observation and thus may benefit from laboratory astrophysics studies. We create a dynamically similar laboratory system by driving a $\sim$1 MA current pulse with a 200 ns rise through a $\approx$2 mm-tall Al cylindrical wire array mounted to a three-dimensional (3-D)-printed, stainless steel scaffolding. This system creates a plasma that converges on the centre axis and ejects cm-scale bipolar outflows. Depending on the chosen 3-D-printed load path, the system may be designed to push the ablated plasma flow radially inwards or off-axis to make rotation. In this paper, we present results from the simplest iteration of the load which generates radially converging streams that launch non-rotating jets. The temperature, velocity and density of the radial inflows and axial outflows are characterized using interferometry, gated optical and ultraviolet imaging, and Thomson scattering diagnostics. We show that experimental measurements of the Reynolds number and sonic Mach number in three different stages of the experiment scale favourably to the observed properties of YSO jets with $Re\sim 10^5\unicode{x2013}10^9$ and $M\sim 1\unicode{x2013}10$, while our magnetic Reynolds number of $Re_M\sim 1\unicode{x2013}15$ indicates that the magnetic field diffuses out of our plasma over multiple hydrodynamical time scales. We compare our results with 3-D numerical simulations in the PERSEUS extended magnetohydrodynamics code.
In response to the COVID-19 pandemic, we rapidly implemented a plasma coordination center, within two months, to support transfusion for two outpatient randomized controlled trials. The center design was based on an investigational drug services model and a Food and Drug Administration-compliant database to manage blood product inventory and trial safety.
Methods:
A core investigational team adapted a cloud-based platform to randomize patient assignments and track inventory distribution of control plasma and high-titer COVID-19 convalescent plasma of different blood groups from 29 donor collection centers directly to blood banks serving 26 transfusion sites.
Results:
We performed 1,351 transfusions in 16 months. The transparency of the digital inventory at each site was critical to facilitate qualification, randomization, and overnight shipments of blood group-compatible plasma for transfusions into trial participants. While inventory challenges were heightened with COVID-19 convalescent plasma, the cloud-based system, and the flexible approach of the plasma coordination center staff across the blood bank network enabled decentralized procurement and distribution of investigational products to maintain inventory thresholds and overcome local supply chain restraints at the sites.
Conclusion:
The rapid creation of a plasma coordination center for outpatient transfusions is infrequent in the academic setting. Distributing more than 3,100 plasma units to blood banks charged with managing investigational inventory across the U.S. in a decentralized manner posed operational and regulatory challenges while providing opportunities for the plasma coordination center to contribute to research of global importance. This program can serve as a template in subsequent public health emergencies.
Develop and implement a system in the Veterans Health Administration (VA) to alert local medical center personnel in real time when an acute- or long-term care patient/resident is admitted to their facility with a history of colonization or infection with a multidrug-resistant organism (MDRO) previously identified at any VA facility across the nation.
Methods:
An algorithm was developed to extract clinical microbiology and local facility census data from the VA Corporate Data Warehouse initially targeting carbapenem-resistant Enterobacterales (CRE) and methicillin-resistant Staphylococcus aureus (MRSA). The algorithm was validated with chart review of CRE cases from 2010-2018, trialed and refined in 24 VA healthcare systems over two years, expanded to other MDROs and implemented nationwide on 4/2022 as “VA Bug Alert” (VABA). Use through 8/2023 was assessed.
Results:
VABA performed well for CRE with recall of 96.3%, precision of 99.8%, and F1 score of 98.0%. At the 24 trial sites, feedback was recorded for 1,011 admissions with a history of CRE (130), MRSA (814), or both (67). Among Infection Preventionists and MDRO Prevention Coordinators, 338 (33%) reported being previously unaware of the information, and of these, 271 (80%) reported they would not have otherwise known this information. By fourteen months after nationwide implementation, 113/130 (87%) VA healthcare systems had at least one VABA subscriber.
Conclusions:
A national system for alerting facilities in real-time of patients admitted with an MDRO history was successfully developed and implemented in VA. Next steps include understanding facilitators and barriers to use and coordination with non-VA facilities nationwide.
Clinical outcomes of repetitive transcranial magnetic stimulation (rTMS) for treatment of treatment-resistant depression (TRD) vary widely and there is no mood rating scale that is standard for assessing rTMS outcome. It remains unclear whether TMS is as efficacious in older adults with late-life depression (LLD) compared to younger adults with major depressive disorder (MDD). This study examined the effect of age on outcomes of rTMS treatment of adults with TRD. Self-report and observer mood ratings were measured weekly in 687 subjects ages 16–100 years undergoing rTMS treatment using the Inventory of Depressive Symptomatology 30-item Self-Report (IDS-SR), Patient Health Questionnaire 9-item (PHQ), Profile of Mood States 30-item, and Hamilton Depression Rating Scale 17-item (HDRS). All rating scales detected significant improvement with treatment; response and remission rates varied by scale but not by age (response/remission ≥ 60: 38%–57%/25%–33%; <60: 32%–49%/18%–25%). Proportional hazards models showed early improvement predicted later improvement across ages, though early improvements in PHQ and HDRS were more predictive of remission in those < 60 years (relative to those ≥ 60) and greater baseline IDS burden was more predictive of non-remission in those ≥ 60 years (relative to those < 60). These results indicate there is no significant effect of age on treatment outcomes in rTMS for TRD, though rating instruments may differ in assessment of symptom burden between younger and older adults during treatment.
This retrospective cohort study examined prosocial skills development in child welfare-involved children, how intimate partner violence (IPV) exposure explained heterogeneity in children’s trajectories of prosocial skill development, and the degree to which protective factors across children’s ecologies promoted prosocial skill development. Data were from 1,678 children from the National Survey of Child and Adolescent Well-being I, collected between 1999 and 2007. Cohort-sequential growth mixture models were estimated to identify patterns of prosocial skill development between the ages of 3 to 10 years. Four diverse pathways were identified, including two groups that started high (high subtle-decreasing; high decreasing-to-increasing) and two groups that started low (low stable; low increasing-to-decreasing). Children with prior history of child welfare involvement, preschool-age IPV exposure, school-age IPV exposure, or family income below the federal poverty level had higher odds of being in the high decreasing-to-increasing group compared with the high subtle-decreasing group. Children with a mother with greater than high school education or higher maternal responsiveness had higher odds of being in the low increasing-to-decreasing group compared with the low stable group. The importance of maternal responsiveness in fostering prosocial skill development underlines the need for further assessment and intervention. Recommendations for clinical assessment and parenting programs are provided.
In times of health reform, fiscal restraint and population aging, it becomes increasingly imperative to understand what must be done to better link research and policy in the health area. In this paper, the major determinants of healthy aging are discussed in terms of current conceptual frameworks of health, measurement, methodologies, and data sources. In order to maximize the benefit for the health of current and future Canadian seniors, policy recommendations are made to Statistics Canada, Health Canada, and the Seniors Independence Research Program (SIRP) which cover a range of issues related to measurement and data sources, health services, health status, economic status, and education.
The relationship between dietary habits and microbiota composition during adolescence has not been well examined. This is a crucial knowledge gap to fill considering that diet–microbiota interactions influence neurodevelopment, immune system maturation and metabolic regulation. This study examined the associations between diet and the gut microbiota in a school-based sample of 136 adolescents (Mage = 12·1 years; age range 11–13 years; 48 % female; 47 % Black, 38 % non-Hispanic White, 15 % Hispanic or other minorities) from urban, suburban and rural areas in the Southeast USA. Adolescents completed the Rapid Eating Assessment for Participants and provided stool samples for 16S ribosomal RNA gene sequencing. Parents reported their child and family socio-demographic characteristics. The associations between diet and socio-demographics with gut microbiota diversity and abundance were analysed using multivariable regression models. Child race and ethnicity, sex, socio-economic status and geographic locale contributed to variation within microbiota composition (β-diversity). Greater consumption of processed meat was associated with a lower microbial α-diversity after adjusting for socio-demographic variables. Multi-adjusted models showed that frequent consumption of nutrient-poor, energy-dense foods (e.g. sugar-sweetened beverages, fried foods, sweets) was negatively associated with abundances of genera in the family Lachnospiraceae (Anaerostipes, Fusicatenibacter and Roseburia), which are thought to play a beneficial role in host health through their production of short-chain fatty acids (SCFAs). These results provide new insights into the complex relationships among socio-demographic factors, diet and gut microbiota during adolescence. Adolescence may represent a critical window of opportunity to promote healthy eating practices that shape a homoeostatic gut microbiota with life-long benefits.
We present kinematic, radiometric, geochemical and PT data, which help to constrain the tectonometamorphic evolution of the Tripolitza Unit (TPU). The age of both the metamorphic peak (P = 0.4 ±0.2 GPa, T = ca. 310 °C) and top-to-the WNW mylonitic thrusting, attributed to the emplacement of the hanging Pindos nappe, has been constrained at 19 ±2.5 Ma using Rb-Sr on synkinematic white mica of a basal mylonite of NW Crete. This early tectonic event is also documented by the oldest generation of veins, which cut through less metamorphic (T = 240 ±15 °C) late Bartonian/Priabonian Nummulite limestone exposed as olistolith in TPU flysch of central Crete. Calcite of these veins yielded a similar U-Pb age at 20 ±6 Ma. U-Pb dating of matrix calcite, on the other hand, reflect the time of sedimentation (38.4 ±5.7 Ma and 37.6 ±1.2 Ma), which is in line with the faunal content of the black limestone. Geochemical data and U-Pb calcite ages of fibres of the Nummulite test (32.3 ±3.1 Ma and 34.6 ±0.9 Ma) suggest unexpected pseudomorphic fibre replacement during late Priabonian/early Rupelian diagenesis. Additional calcite veins, which developed at ca. 10–11 and 7 – 9 Ma (U-Pb on calcite), are attributed to top-to-the S thrusting and subsequent extension, respectively. The resulting anticlockwise rotation of the shortening direction within the TPU from WNW-ESE at ca. 20 Ma to N-S at ca. 10 Ma has significant implications for the geodynamic evolution of the External Hellenides.
Traditional classifications of vertebrates’ responses to urbanization fail to capture the behaviour of those that rely on both urban and wildland resources for population persistence. Here, we use the wood stork (Mycteria americana), a species that makes daily foraging trips up to 74 km away from its nest, as an example of a previously unrecognized response to urbanization. We monitored nests and sampled diets at stork colonies in south Florida (USA) during 2014–2020 to investigate how storks use urban habitats. We found that urban development now comprises up to 51.6% of the land cover within the 30-km core foraging area surrounding colonies and that storks access alternative prey types within these urban areas. Our results also showed that urban-nesting storks outperformed wildland-nesting storks when the hydrological condition of the wetlands was suboptimal for foraging. Though storks still require healthy wetlands for population persistence, urban habitat benefitted storks when hydrological patterns were not ideal for prey production in wildlands. This ‘commuter’ response to urbanization, whereby individuals opt to utilize both urban and wildland resources within short time periods, may apply to other vertebrates with large home ranges.
The coronavirus disease 2019 (COVID-19) pandemic has placed significant burden on healthcare systems. We compared Clostridioides difficile infection (CDI) epidemiology before and during the pandemic across 71 hospitals participating in the Canadian Nosocomial Infection Surveillance Program. Using an interrupted time series analysis, we showed that CDI rates significantly increased during the COVID-19 pandemic.
To describe the genomic analysis and epidemiologic response related to a slow and prolonged methicillin-resistant Staphylococcus aureus (MRSA) outbreak.
Design:
Prospective observational study.
Setting:
Neonatal intensive care unit (NICU).
Methods:
We conducted an epidemiologic investigation of a NICU MRSA outbreak involving serial baby and staff screening to identify opportunities for decolonization. Whole-genome sequencing was performed on MRSA isolates.
Results:
A NICU with excellent hand hygiene compliance and longstanding minimal healthcare-associated infections experienced an MRSA outbreak involving 15 babies and 6 healthcare personnel (HCP). In total, 12 cases occurred slowly over a 1-year period (mean, 30.7 days apart) followed by 3 additional cases 7 months later. Multiple progressive infection prevention interventions were implemented, including contact precautions and cohorting of MRSA-positive babies, hand hygiene observers, enhanced environmental cleaning, screening of babies and staff, and decolonization of carriers. Only decolonization of HCP found to be persistent carriers of MRSA was successful in stopping transmission and ending the outbreak. Genomic analyses identified bidirectional transmission between babies and HCP during the outbreak.
Conclusions:
In comparison to fast outbreaks, outbreaks that are “slow and sustained” may be more common to units with strong existing infection prevention practices such that a series of breaches have to align to result in a case. We identified a slow outbreak that persisted among staff and babies and was only stopped by identifying and decolonizing persistent MRSA carriage among staff. A repeated decolonization regimen was successful in allowing previously persistent carriers to safely continue work duties.
A comparison of computer-extracted and facility-reported counts of hospitalized coronavirus disease 2019 (COVID-19) patients for public health reporting at 36 hospitals revealed 42% of days with matching counts between the data sources. Miscategorization of suspect cases was a primary driver of discordance. Clear reporting definitions and data validation facilitate emerging disease surveillance.
Cardiac intensivists frequently assess patient readiness to wean off mechanical ventilation with an extubation readiness trial despite it being no more effective than clinician judgement alone. We evaluated the utility of high-frequency physiologic data and machine learning for improving the prediction of extubation failure in children with cardiovascular disease.
Methods:
This was a retrospective analysis of clinical registry data and streamed physiologic extubation readiness trial data from one paediatric cardiac ICU (12/2016-3/2018). We analysed patients’ final extubation readiness trial. Machine learning methods (classification and regression tree, Boosting, Random Forest) were performed using clinical/demographic data, physiologic data, and both datasets. Extubation failure was defined as reintubation within 48 hrs. Classifier performance was assessed on prediction accuracy and area under the receiver operating characteristic curve.
Results:
Of 178 episodes, 11.2% (N = 20) failed extubation. Using clinical/demographic data, our machine learning methods identified variables such as age, weight, height, and ventilation duration as being important in predicting extubation failure. Best classifier performance with this data was Boosting (prediction accuracy: 0.88; area under the receiver operating characteristic curve: 0.74). Using physiologic data, our machine learning methods found oxygen saturation extremes and descriptors of dynamic compliance, central venous pressure, and heart/respiratory rate to be of importance. The best classifier in this setting was Random Forest (prediction accuracy: 0.89; area under the receiver operating characteristic curve: 0.75). Combining both datasets produced classifiers highlighting the importance of physiologic variables in determining extubation failure, though predictive performance was not improved.
Conclusion:
Physiologic variables not routinely scrutinised during extubation readiness trials were identified as potential extubation failure predictors. Larger analyses are necessary to investigate whether these markers can improve clinical decision-making.
Suicidal thoughts and behaviors (STBs) are major public health concerns among adolescents, and research is needed to identify how risk is conferred over the short term (hours and days). Sleep problems may be associated with elevated risk for STBs, but less is known about this link in youth over short time periods. The current study utilized a multimodal real-time monitoring approach to examine the association between sleep problems (via daily sleep diary and actigraphy) and next-day suicidal thinking in 48 adolescents with a history of STBs during the month following discharge from acute psychiatric care. Results indicated that specific indices of sleep problems assessed via sleep diary (i.e., greater sleep onset latency, nightmares, ruminative thoughts before sleep) predicted next-day suicidal thinking. These effects were significant even when daily sadness and baseline depression were included in the models. Moreover, several associations between daily-level sleep problems and next-day suicidal thinking were moderated by person-level measures of the construct. In contrast, sleep indices assessed objectively (via actigraphy) were either not related to suicidal thinking or were related in the opposite direction from hypothesized. Together, these findings provide some support for sleep problems as a short-term risk factor for suicidal thinking in high-risk adolescents.
Seed retention, and ultimately seed shatter, are extremely important for the efficacy of harvest weed seed control (HWSC) and are likely influenced by various agroecological and environmental factors. Field studies investigated seed-shattering phenology of 22 weed species across three soybean [Glycine max (L.) Merr.]-producing regions in the United States. We further evaluated the potential drivers of seed shatter in terms of weather conditions, growing degree days, and plant biomass. Based on the results, weather conditions had no consistent impact on weed seed shatter. However, there was a positive correlation between individual weed plant biomass and delayed weed seed–shattering rates during harvest. This work demonstrates that HWSC can potentially reduce weed seedbank inputs of plants that have escaped early-season management practices and retained seed through harvest. However, smaller individuals of plants within the same population that shatter seed before harvest pose a risk of escaping early-season management and HWSC.
Healthcare personnel (HCP) with unprotected exposures to aerosol-generating procedures (AGPs) on patients with coronavirus disease 2019 (COVID-19) are at risk of infection with severe acute respiratory coronavirus virus 2 (SARS-CoV-2). A retrospective review at an academic medical center demonstrated an infection rate of <1% among HCP involved in AGPs without a respirator and/or eye protection.
Social cognition is frequently impaired following an acquired brain injury (ABI) but often overlooked in clinical assessments. There are few validated and appropriate measures of social cognitive abilities for ABI patients. The current study examined the validity of the Edinburgh Social Cognition Test (ESCoT, Baksh et al., 2018) in measuring social cognition following an ABI.
Methods:
Forty-one patients with ABI were recruited from a rehabilitation service and completed measures of general ability, executive functions and social cognition (Faux Pas; FP, Reading the Mind in the Eyes; RME, Social Norms Questionnaire; SNQ and the ESCoT). Forty-one controls matched on age, sex and years of education also performed the RME, SNQ and ESCoT.
Results:
A diagnosis of ABI was significantly associated with poorer performance on all ESCoT measures and RME while adjusting for age, sex and years of education. In ABI patients, the ESCoT showed good internal consistency with its subcomponents and performance correlated with the other measures of social cognition demonstrating convergent validity. Better Trail Making Test performance predicted better ESCoT total, RME and SNQ scores. Higher TOPF IQ was associated with higher RME scores, while higher WAIS-IV working memory predicted better FP performance.
Conclusions:
The ESCoT is a brief, valid and internally consistent assessment tool able to detect social cognition deficits in neurological patients. Given the prevalence of social cognition deficits in ABI and the marked impact these can have on an individual’s recovery, this assessment can be a helpful addition to a comprehensive neuropsychological assessment.