We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Overnutrition during before and pregnancy can cause maternal obesity and raise the risk of maternal metabolic diseases during pregnancy, and in offspring. Lentinus edodes may prevent or reduce obesity. This study aimed to to assess Lentinus edodes fermented products effects on insulin sensitivity, glucose and lipid metabolism in maternal and offspring, and explore its action mechanism. A model of overnutrition during pregnancy and lactation was developed using a 60 % kcal high-fat diet in C57BL6/J female mice. Fermented Lentinus edodes (FLE) was added to the diet at concentrations of 1 %, 3 %, and 5 %. The results demonstrated that FLE to the gestation diet significantly reduced serum insulin levels and homeostatic model assessment for insulin resistance (HOMA-IR) in pregnant mice. FLE can regulate maternal lipid metabolism and reduce fat deposition. Meanwhile, the hepatic phosphoinositide-3-kinase-protein kinase (PI3K/AKT) signaling pathway was significantly activated in the maternal mice. There is a significant negative correlation between maternal FLE supplementation doses and offspring body fat percentage and visceral fat content. Furthermore, FLE supplementation significantly increased offspring weaning litter weight, significantly reduced fasting glucose level, serum insulin level, HOMA-IR and serum glucose level, significantly activated liver PI3K/AKT signaling pathway in offspring, and upregulated the expression of liver lipolytic genes adipose triglyceride lipase, hormone-sensitive lipase and carnitine palmitoyltransferase 1 mRNA. Overall, FLE supplementation can regulate maternal lipid metabolism and reduce fat deposition during pregnancy and lactation, and it may improve insulin sensitivity in pregnant mothers and offspring at weaning through activation of the PI3K/AKT signaling pathway.
We propose a two-sided market entry game and present experiments studying coordination behavior in the game. The two-sided market in the game is operated by an intermediary monopoly platform, serving two sides (i.e., customers and service providers) and featuring asymmetric agents, cross-side network effects, and endogenous market capacity. The game has multiple pure-strategy Nash equilibria if at least one side has a high willingness to enter the market and the other side’s willingness is not very low. We conduct a laboratory experiment involving three treatments corresponding to different combinations of willingness to enter the market among customers and service providers. The experimental results indicate that willingness to enter the market and cross-side network effects significantly influence coordination behavior in two-sided markets. When the multiple pure-strategy Nash equilibria are Pareto ranked on both sides, customers and service providers can coordinate their behavior to the payoff-dominant equilibrium via tacit coordination under strategic uncertainty. However, when the multiple pure-strategy Nash equilibria are Pareto ranked on one side but Pareto equivalent on the other side, coordination failure and disequilibrium occurred, and the equilibria cannot predict the aggregate behavior well. Our experimental results indicate that a thriving two-sided market should coordinate both sides on board.
The relationship between emotional symptoms and cognitive impairments in major depressive disorder (MDD) is key to understanding cognitive dysfunction and optimizing recovery strategies. This study investigates the relationship between subjective and objective cognitive functions and emotional symptoms in MDD and evaluates their contributions to social functioning recovery.
Methods
The Prospective Cohort Study of Depression in China (PROUD) involved 1,376 MDD patients, who underwent 8 weeks of antidepressant monotherapy with assessments at baseline, week 8, and week 52. Measures included the Hamilton Depression Rating Scale (HAMD-17), Quick Inventory of Depressive Symptomatology-Self Report (QIDS-SR16), Chinese Brief Cognitive Test (C-BCT), Perceived Deficits Questionnaire for Depression-5 (PDQ-D5), and Sheehan Disability Scale (SDS). Cross-lagged panel modeling (CLPM) was used to analyze temporal relationships.
Results
Depressive symptoms and cognitive measures demonstrated significant improvement over 8 weeks (p < 0.001). Baseline subjective cognitive dysfunction predicted depressive symptoms at week 8 (HAMD-17: β = 0.190, 95% CI: 0.108–0.271; QIDS-SR16: β = 0.217, 95% CI: 0.126–0.308). Meanwhile, baseline depressive symptoms (QIDS-SR16) also predicted subsequent subjective cognitive dysfunction (β = 0.090, 95% CI: 0.003-0.177). Recovery of social functioning was driven by improvements in depressive symptoms (β = 0.384, p < 0.0001) and subjective cognition (β = 0.551, p < 0.0001), with subjective cognition contributing more substantially (R2 = 0.196 vs. 0.075).
Conclusions
Subjective cognitive dysfunction is more strongly associated with depressive symptoms and plays a significant role in social functioning recovery, highlighting the need for targeted interventions addressing subjective cognitive deficits in MDD.
Despite the existent studies investigating the risk factors for postoperative pneumonia (POP) following coronary artery bypass grafting (CABG), the comprehensive understanding of POP is constrained by the scarcity of epidemiological data.
Objective:
To investigate the epidemiology and contributing factors of POP in patients undergoing isolated CABG, and establish a prediction model.
Design:
A single center, retrospective case-control study.
Setting:
Seven cardiovascular surgery wards across three campuses of a large general hospital in Henan Province, Mid-China.
Participants:
Patients aged ≥ 18 years who underwent isolated CABG between January 1, 2020 and November 30, 2023.
Methods:
Univariate and multivariate analyses with restricted cubic splines (RCS) were performed to identify factors that independently contributed to POP and explore the potential nonlinear relationships. The prediction model was evaluated via receiver operating characteristic curve analysis.
Results:
POP occurred in 11.34% of patients (518/4569). A total of 416 pathogenic strains were isolated from 381 patients, predominantly Gram-negative bacteria (86.5%). Pathogen distribution varied annually and quarterly. Multivariate analyses indicated that age, diabetes mellitus, smoking, operative duration, red blood cell transfusion, and duration of mechanical ventilation were significantly associated with higher POP risk, whereas higher hemoglobin and total cholesterol levels indicated a reduced likelihood. RCS analysis revealed a nonlinear relationship between operative duration and POP. The prediction model demonstrated a high predictive value (C-statistic: 0.774, 95% CI: 0.735-0.813).
Conclusions:
This study identified eight independent factors that significantly influence the risk of POP following CABG, thereby clarifying the direction for optimizing perioperative prevention strategies for POP.
Hand, foot, and mouth disease (HFMD) shows spatiotemporal heterogeneity in China. A spatiotemporal filtering model was constructed and applied to HFMD data to explore the underlying spatiotemporal structure of the disease and determine the impact of different spatiotemporal weight matrices on the results. HFMD cases and covariate data in East China were collected between 2009 and 2015. The different spatiotemporal weight matrices formed by Rook, K-nearest neighbour (KNN; K = 1), distance, and second-order spatial weight matrices (SO-SWM) with first-order temporal weight matrices in contemporaneous and lagged forms were decomposed, and spatiotemporal filtering model was constructed by selecting eigenvectors according to MC and the AIC. We used MI, standard deviation of the regression coefficients, and five indices (AIC, BIC, DIC, R2, and MSE) to compare the spatiotemporal filtering model with a Bayesian spatiotemporal model. The eigenvectors effectively removed spatial correlation in the model residuals (Moran’s I < 0.2, p > 0.05). The Bayesian spatiotemporal model’s Rook weight matrix outperformed others. The spatiotemporal filtering model with SO-SWM was superior, as shown by lower AIC (92,029.60), BIC (92,681.20), and MSE (418,022.7) values, and higher R2 (0.56) value. All spatiotemporal contemporaneous structures outperformed the lagged structures. Additionally, eigenvector maps from the Rook and SO-SWM closely resembled incidence patterns of HFMD.
Simultaneous interpreting (SI) is an intensive multitasking activity that requires coordination of a variety of linguistic and cognitive control mechanisms. Research has shown that interpreters perform better in tasks that require domain-general executive functions (EF), but the question remains whether such cognitive alternation is a result of interpreting experience or it reflects a selection bias that only cognitively capable people are recruited and trained to be interpreters. We examined the cognitive changes experienced by beginner-level students engaged in an intensive, two-week interpreting training programme. Our findings show that: (a) only cognitive flexibility was enhanced by training, together with improvement in SI performance; (b) the three EF subcomponents in their pre-existing forms negatively correlated with training gains; and (c) only pre-existing cognitive flexibility was positively associated with improvement in SI performance. Findings were discussed regarding the relationship between cognitive abilities and the early-stage acquisition of interpreting.
Active fluids encompass a wide range of non-equilibrium fluids, in which the self-propulsion or rotation of their units can give rise to large-scale spontaneous flows. Despite the diversity of active fluids, they are commonly viscoelastic. Therefore, we develop a hydrodynamic model of isotropic active liquids by accounting for their viscoelasticity. Specifically, we incorporate an active stress term into a general viscoelastic liquid model to study the spontaneous flow states and their transitions in two-dimensional channel, annulus and disk geometries. We have discovered rich spontaneous flow states in a channel as a function of activity and Weissenberg number, including unidirectional flow, travelling-wave and vortex-roll states. The Weissenberg number acts against activity by suppressing the spontaneous flow. In an annulus confinement, we find that a net flow can be generated only if the aspect ratio of the annulus is not too large nor too small, akin to some three-dimensional active-flow phenomena. In a disk geometry, we observe a periodic chirality switching of a single vortex flow, resembling the bacteria-based active fluid experiments. The two phenomena reproduced in our model differ in Weissenberg number and frictional coefficient. As such, our active viscoelastic model offers a unified framework to elucidate diverse active liquids, uncover their connections and highlight the universality of dynamic active-flow patterns.
Despite being almost 4000m above sea level, cereal crops have been grown in the Ngari Prefecture on the Tibetan Plateau for thousands of years. Where and when domestic crop species adapted to high-altitude growing conditions is a matter of ongoing debate. Here, the authors present a new radiocarbon date from the Gepa serul cemetery, providing the earliest evidence of naked six-rowed barley in Tibet (c. 3500 BP). Evaluating the available evidence for barley cultivation and interregional connections in central Asia at this time, two hypotheses are considered—a generational advance with farmers migrating up river valleys or rapid, long-distance trade through mountain corridors.
Substantial changes resulting from the interaction of environmental and dietary factors contribute to an increased risk of obesity, while their specific associations with obesity remain unclear. We identified inflammation-related dietary patterns (DP) and explored their associations with obesity among urbanised Tibetan adults under significant environmental and dietary changes. Totally, 1826 subjects from the suburbs of Golmud City were enrolled in an open cohort study, of which 514 were followed up. Height, weight and waist circumference were used to define overweight and obesity. DP were derived using reduced rank regression with forty-one food groups as predictors and high-sensitivity C-reactive protein and prognostic nutritional index as inflammatory response variables. Altitude was classified as high or ultra-high. Two DP were extracted. DP-1 was characterised by having high consumptions of sugar-sweetened beverages, savoury snacks, and poultry and a low intake of tsamba. DP-2 had high intakes of poultry, pork, animal offal, and fruits and a low intake of butter tea. Participants in the highest tertiles (T3) of DP had increased risks of overweight and obesity (DP-1: OR = 1·37, 95 % CI 1·07, 1·77; DP-2: OR = 1·48, 95 % CI 1·18, 1·85) than those in the lowest tertiles (T1). Participants in T3 of DP-2 had an increased risk of central obesity (OR = 2·25, 95 % CI 1·49, 3·39) than those in T1. The positive association of DP-1 with overweight and obesity was only significant at high altitudes, while no similar effect was observed for DP-2. Inflammation-related DP were associated with increased risks of overweight and/or obesity.
Caring for children with solid tumors (STs) can impact caregiver’s physical and mental health. Caregiver mastery, which influences psychological well-being, is vital in improving outcomes for both caregivers and children. The study aimed to investigate the relationship between caregiver mastery, anxiety, depression, fear of disease progression (FoP), caregiver burden, and the quality of life (QOL) of children with ST.
Methods
This cross-sectional study was conducted from June 2022 to April 2023 at a Grade A tertiary hospital in Shandong. Family caregivers of children with ST completed several validated measures, including the Pediatric Quality of Life Inventory (PedsQL) 3.0 Cancer Module, the Fear of Progression Questionnaire-parent version (FoP-Q-SF/PR), the Zarit Burden Interview Scale (ZBI), the hospital anxiety and depression scale (HADS), and the Caregiver Mastery Scale. Multiple linear regression analyses assessed the relationships between FoP, caregiver burden, anxiety, depression, caregiver mastery, and children’s QOL. Results were expressed as β and 95% confidence intervals (CIs).
Results
A total of 454 caregivers participated. Caregiver mastery was positively correlated with children’s QOL (β = 0.80, 95% CI: 0.20 to 1.39). Depression (β = −0.64, 95% CI: −0.83 to −0.45), anxiety (β = −0.67, 95% CI: −0.85 to −0.49), caregiver burden (β = −1.20, 95% CI: −1.60 to −0.80), and FoP (β = −0.04, 95% CI: −0.05 to −0.03) were negatively related to children’s QOL. Caregiver mastery moderated the associations between depression, caregiver burden, FoP, and children’s QOL, while also improving the effect of mild anxiety on QOL.
Significance of results
The study underscores the importance of fostering caregiver mastery to mitigate the negative impact of caregiver distress on children’s QOL and improve outcomes for both caregivers and children with solid tumors.
Conclusion
Caregiver mastery moderates the effects of anxiety, depression, FoP, and caregiver burdenon children’s QOL. Supporting caregiver mastery can alleviate caregiver burden and enhance both caregiver and child well-being.
The school–vacation cycle may have impacts on the psychological states of adolescents. However, little evidence illustrates how transition from school to vacation impacts students’ psychological states (e.g. depression and anxiety).
Aims
To explore the changing patterns of depression and anxiety symptoms among adolescent students within a school–vacation transition and to provide insights for prevention or intervention targets.
Method
Social demographic data and depression and anxiety symptoms were measured from 1380 adolescent students during the school year (age: 13.8 ± 0.88) and 1100 students during the summer vacation (age: 14.2 ± 0.93) in China. Multilevel mixed-effect models were used to examine the changes in depression and anxiety levels and the associated influencing factors. Network analysis was used to explore the symptom network structures of depression and anxiety during school and vacation.
Results
Depression and anxiety symptoms significantly decreased during the vacation compared to the school period. Being female, higher age and with lower mother's educational level were identified as longitudinal risk factors. Interaction effects were found between group (school versus vacation) and the father's educational level as well as grade. Network analyses demonstrated that the anxiety symptoms, including ‘Nervous’, ‘Control worry’ and ‘Relax’ were the most central symptoms at both times. Psychomotor disturbance, including ‘Restless’, ‘Nervous’ and ‘Motor’, bridged depression and anxiety symptoms. The central and bridge symptoms showed variation across the school vacation.
Conclusions
The school–vacation transition had an impact on students’ depression and anxiety symptoms. Prevention and intervention strategies for adolescents’ depression and anxiety during school and vacation periods should be differentially developed.
The collapse of an initially spherical cavitation bubble near a free surface leads to the formation of two jets: a downward jet into the liquid, and an upward jet penetrating the free surface. In this study, we examine the surprising interaction of a bubble trapped in a stable cavitating vortex ring approaching a free surface. As a result, a single fast and tall liquid jet forms. We find that this jet is observed only above critical Froude numbers ($Fr$) and Weber numbers ($We$) when ${Fr}^2 (1.6-2.73/{We}) > 1$, illustrating the importance of inertia, gravity and surface tension in accelerating this novel jet and thereby reaching heights several hundred times the radius of the vortex ring. Our experimental results are supported by numerical simulations, revealing that the underlying mechanism driving the vortex ring acceleration is the disruption of the equilibrium of high-pressure regions at the front and rear of the vortex ring caused by the free surface. Quantitative analysis based on the energy relationships elucidates that the velocity ratio between the maximum velocity of the free-surface jet and the translational velocity of the vortex ring is relatively stable yet is attenuated by surface tension when the jet is mild.
In this paper, we simulate the process of two-dimensional axisymmetric fluid–structure coupling of a droplet impacting on a flexible disk. The effects of dimensionless disk stiffness (K = 0.1–1000), Weber number (We = 1–500) and contact angle (θ = 130° and 60°) on the dynamics of the droplet impacting on the flexible disk are analysed. The results indicate that there are five typical impact modes for a hydrophobic surface (θ = 130°) and four typical impact modes for a hydrophilic surface (θ = 60°) within the range of considered parameters. The analysis of spreading factor reveals that a part of the energy is transferred to the substrate, which is manifested as a weakening of the droplet spreading, when the substrate deforms downwards due to the droplet impact; the squeezing of the droplet causes a tendency to flow from the centre of the droplet to the edge, which is manifested as an enhancement of the droplet spreading, when the substrate recovers from the downward deformation. The effect of the substrate flexibility on the maximum spreading factor depends on the competition of the two mechanisms above. Based on this, a modified scaling law of βmax has been proposed by introducing the effective Weber number (Wem). The analysis of impact force demonstrates that the peak of the impact force is related to the deflection of the flexible substrate which is different from that of a rigid wall; and three typical processes of impact force variation have been summarised. In addition, unlike the rigid substrate scenario, there is an energy interaction between the droplet and the flexible substrate after impact occurs, which is classified as three typical energy transformation processes.
This chapter discusses how questionnaire-based research can be implemented in the English Medium Instruction (EMI) contexts. It presents an empirical study which that examined Chinese EMI university students’ attitudes and motivation (i.e., integrative and instrumental orientations) toward learning content subject knowledge in English. An EMI scale adapted from Gardner’s (2004) Attitude/Motivation Test Battery (AMTB), which takes the format of Likert-point scale as explained in Chapter 3 of the this book, was validated and administered to 541 EMI students from three Chinese universities. The validity and reliability of the scale were measured, the correlations of the three dimensions (i.e., attitudes, integrative orientation, and instrumental motivation) were tested, and the role of demographic variables (i.e., gender, level of study, disciplinary background) in EMI attitudes and motivation were explored. The research findings suggest the validity and reliability of the scale, the positive correlations among the three dimensions, and the different degrees of EMI attitudes and motivation between male and female students and between soft science and hard science students. The researchers argue that questionnaire-based research is appropriate for the EMI contexts, but its effectiveness can be enhanced if the mixed methods design is adopted.
The self-generated magnetic field in three-dimensional (3-D) single-mode ablative Rayleigh–Taylor instability (ARTI) relevant to the acceleration phase of a direct-drive inertial confinement fusion (ICF) implosion is investigated. It is found that stronger magnetic fields up to a few thousand teslas can be generated by 3-D ARTI rather than by its two-dimensional (2-D) counterpart. The Nernst effects significantly alter the magnetic field convection and amplify the magnetic fields. The magnetic field of thousands of teslas yields the Hall parameter of the order of unity, leading to profound magnetized heat flux modification. While the magnetic field significantly accelerates the bubble growth in the short-wavelength 2-D modes through modifying the heat fluxes, the magnetic field mostly accelerates the spike growth but has little influence on the bubble growth in 3-D ARTI. The accelerated growth of spikes in 3-D ARTI is expected to enhance material mixing and degrade ICF implosion performance. This work is focused on a regime relevant to direct-drive ICF parameters at the National Ignition Facility, and it also covers a range of key parameters that are relevant to other ICF designs and hydrodynamic/astrophysical scenarios.
Natural infection by Trichinella sp. has been reported in humans and more than 150 species of animals, especially carnivorous and omnivorous mammals. Although the presence of Trichinella sp. infection in wild boars (Sus scrofa) has been documented worldwide, limited information is known about Trichinella circulation in farmed wild boars in China. This study intends to investigate the prevalence of Trichinella sp. in farmed wild boars in China. Seven hundred and sixty-one (761) muscle samples from farmed wild boars were collected in Jilin Province of China from 2017 to 2020. The diaphragm muscles were examined by artificial digestion method. The overall prevalence of Trichinella in farmed wild boars was 0.53% [95% confidence interval (CI): 0.51–0.55]. The average parasite loading was 0.076 ± 0.025 larvae per gram (lpg), and the highest burden was 0.21 lpg in a wild boar from Fusong city. Trichinella spiralis was the only species identified by multiplex polymerase chain reaction. The 5S rDNA inter-genic spacer region of Trichinella was amplified and sequenced. The results showed that the obtained sequence (GenBank accession number: OQ725583) shared 100% identity with the T. spiralis HLJ isolate (GenBank accession number: MH289505). Since the consumption of farmed wild boars is expected to increase in the future, these findings highlight the significance of developing exclusive guidelines for the processing of slaughtered farmed wild boar meat in China.
Accurately converting satellite instantaneous evapotranspiration (λETi) over time to daily evapotranspiration (λETd) is crucial for estimating regional evapotranspiration from remote sensing satellites, which plays an important role in effective water resource management. In this study, four upscaling methods based on the principle of energy balance, including the evaporative fraction method (Eva-f method), revised evaporative fraction method (R-Eva-f method), crop coefficient method (Kc-ET0 method) and direct canopy resistance method (Direct-rc method), were validated based on the measured data of the Bowen ratio energy balance system (BREB) in maize fields in northwestern (NW) and northeastern (NE) China (semi-arid and semi-humid continental climate regions) from 2021 to 2023. Results indicated that Eva-f and R-Eva-f methods were superior to Kc-ET0 and Direct-rc methods in both climatic regions and performed better between 10:00 and 11:00, with mean absolute errors (MAE) and coefficient of efficiency (ɛ) reaching <10 W/m2 and > 0.91, respectively. Comprehensive evaluation of the optimal upscaling time using global performance indicators (GPI) showed that the Eva-f method had the highest GPI of 0.59 at 12:00 for the NW, while the R-Eva-f method had the highest GPI of 1.18 at 11:00 for the NE. As a result, the Eva-f approach is recommended as the best way for upscaling evapotranspiration in NW, with 12:00 being the ideal upscaling time. The R-Eva-f method is the optimum upscaling method for the Northeast area, with an ideal upscaling time of 11:00. The comprehensive results of this study could be useful for converting λETi to λETd.