We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Quasigeodesic behavior of flow lines is a very useful property in the study of Anosov flows. Not every Anosov flow in dimension three is quasigeodesic. In fact, until recently, up to orbit equivalence, the only previously known examples of quasigeodesic Anosov flows were suspension flows. In a recent article, the second author proved that an Anosov flow on a hyperbolic 3-manifold is quasigeodesic if and only if it is non-$\mathbb {R}$-covered, and this result completes the classification of quasigeodesic Anosov flows on hyperbolic 3-manifolds. In this article, we prove that a new class of examples of Anosov flows are quasigeodesic. These are the first examples of quasigeodesic Anosov flows on 3-manifolds that are neither Seifert, nor solvable, nor hyperbolic. In general, it is very hard to show that a given flow is quasigeodesic and, in this article, we provide a new method to prove that an Anosov flow is quasigeodesic.
Anosov automorphisms with Jordan blocks are not periodic data rigid. We introduce a refinement of the periodic data and show that this refined periodic data characterizes $C^{1+}$ conjugacy for Anosov automorphisms on $\mathbb {T}^4$ with a Jordan block.
Let $(X,\mu ,T,d)$ be a metric measure-preserving dynamical system such that three-fold correlations decay exponentially for Lipschitz continuous observables. Given a sequence $(M_k)$ that converges to $0$ slowly enough, we obtain a strong dynamical Borel–Cantelli result for recurrence, that is, for $\mu $-almost every $x\in X$,
where $\mu (B_k(x)) = M_k$. In particular, we show that this result holds for Axiom A diffeomorphisms and equilibrium states under certain assumptions.
We study shift spaces over a finite alphabet that can be approximated by mixing shifts of finite type in the sense of (pseudo)metrics connected to Ornstein’s $\bar {d}$ metric ($\bar {d}$-approachable shift spaces). The class of $\bar {d}$-approachable shifts can be considered as a topological analog of measure-theoretical Bernoulli systems. The notion of $\bar {d}$-approachability, together with a closely connected notion of $\bar {d}$-shadowing, was introduced by Konieczny, Kupsa, and Kwietniak [Ergod. Th. & Dynam. Sys.43(3) (2023), 943–970]. These notions were developed with the aim of significantly generalizing specification properties. Indeed, many popular variants of the specification property, including the classic one and the almost/weak specification property, ensure $\bar {d}$-approachability and $\bar {d}$-shadowing. Here, we study further properties and connections between $\bar {d}$-shadowing and $\bar {d}$-approachability. We prove that $\bar {d}$-shadowing implies $\bar {d}$-stability (a notion recently introduced by Tim Austin). We show that for surjective shift spaces with the $\bar {d}$-shadowing property the Hausdorff pseudodistance ${\bar d}^{\mathrm {H}}$ between shift spaces induced by $\bar {d}$ is the same as the Hausdorff distance between their simplices of invariant measures with respect to the Hausdorff distance induced by Ornstein’s metric $\bar {d}$ between measures. We prove that without $\bar {d}$-shadowing this need not to be true (it is known that the former distance always bounds the latter). We provide examples illustrating these results, including minimal examples and proximal examples of shift spaces with the $\bar {d}$-shadowing property. The existence of such shift spaces was announced in the earlier paper mentioned above. It shows that $\bar {d}$-shadowing indeed generalizes the specification property.
In this note, we examine the proportion of periodic orbits of Anosov flows that lie in an infinite zero density subset of the first homology group. We show that on a logarithmic scale we get convergence to a discrete fractal dimension.
Let $f: M\rightarrow M$ be a $C^{1+\alpha }$ diffeomorphism on an $m_0$-dimensional compact smooth Riemannian manifold M and $\mu $ a hyperbolic ergodic f-invariant probability measure. This paper obtains an upper bound for the stable (unstable) pointwise dimension of $\mu $, which is given by the unique solution of an equation involving the sub-additive measure-theoretic pressure. If $\mu $ is a Sinai–Ruelle–Bowen (SRB) measure, then the Kaplan–Yorke conjecture is true under some additional conditions and the Lyapunov dimension of $\mu $ can be approximated gradually by the Hausdorff dimension of a sequence of hyperbolic sets $\{\Lambda _n\}_{n\geq 1}$. The limit behaviour of the Carathéodory singular dimension of $\Lambda _n$ on the unstable manifold with respect to the super-additive singular valued potential is also studied.
We show that a class of higher-dimensional hyperbolic endomorphisms admit absolutely continuous invariant probabilities whose densities are regular and vary differentiably with respect to the dynamical system. The maps we consider are skew-products given by $T(x,y) = (E (x), C(x,y))$, where E is an expanding map of $\mathbb {T}^u$ and C is a contracting map on each fiber. If $\inf |\!\det DT| \inf \| (D_yC)^{-1}\| ^{-2s}>1$ for some ${s<r-(({u+d})/{2}+1)}$, $r \geq 2$, and T satisfies a transversality condition between overlaps of iterates of T (a condition which we prove to be $C^r$-generic under mild assumptions), then the SRB measure $\mu _T$ of T is absolutely continuous and its density $h_T$ belongs to the Sobolev space $H^s({\mathbb {T}}^u\times {\mathbb {R}}^d)$. When $s> {u}/{2}$, it is also valid that the density $h_T$ is differentiable with respect to T. Similar results are proved for thermodynamical quantities for potentials close to the geometric potential.
We introduce a new method of constructing Birkhoff sections for pseudo-Anosov flows, which uses the connection between pseudo-Anosov flows and veering triangulations. This method allows for explicit constructions, as well as control over the Birkhoff section in terms of its Euler characteristic and the complexity of the boundary orbits. In particular, we show that any transitive pseudo-Anosov flow has a Birkhoff section with two boundary components.
Katok [Lyapunov exponents, entropy and periodic points of diffeomorphisms. Publ. Math. Inst. Hautes Études Sci.51 (1980), 137–173] conjectured that every $C^{2}$ diffeomorphism f on a Riemannian manifold has the intermediate entropy property, that is, for any constant $c \in [0, h_{\mathrm {top}}(f))$, there exists an ergodic measure $\mu $ of f satisfying $h_{\mu }(f)=c$. In this paper, we obtain a conditional intermediate metric entropy property and two conditional intermediate Birkhoff average properties for basic sets of flows that characterize the refined roles of ergodic measures in the invariant ones. In this process, we establish a ‘multi-horseshoe’ entropy-dense property and use it to get the goal combined with conditional variational principles. We also obtain the same result for singular hyperbolic attractors.
In this paper, we give necessary conditions for an $N$-expansive homeomorphism of a compact metric space to be nonchaotic in the Li–Yorke sense. As application we give a partial answer to a conjecture in [2].
In this paper, we consider the convergence rate with respect to Wasserstein distance in the invariance principle for deterministic non-uniformly hyperbolic systems. Our results apply to uniformly hyperbolic systems and large classes of non-uniformly hyperbolic systems including intermittent maps, Viana maps, unimodal maps and others. Furthermore, as a non-trivial application to the homogenization problem, we investigate the Wasserstein convergence rate of a fast–slow discrete deterministic system to a stochastic differential equation.
For a non-conformal repeller $\Lambda $ of a $C^{1+\alpha }$ map f preserving an ergodic measure $\mu $ of positive entropy, this paper shows that the Lyapunov dimension of $\mu $ can be approximated gradually by the Carathéodory singular dimension of a sequence of horseshoes. For a $C^{1+\alpha }$ diffeomorphism f preserving a hyperbolic ergodic measure $\mu $ of positive entropy, if $(f, \mu )$ has only two Lyapunov exponents $\unicode{x3bb} _u(\mu )>0>\unicode{x3bb} _s(\mu )$, then the Hausdorff or lower box or upper box dimension of $\mu $ can be approximated by the corresponding dimension of the horseshoes $\{\Lambda _n\}$. The same statement holds true if f is a $C^1$ diffeomorphism with a dominated Oseledet’s splitting with respect to $\mu $.
For a $C^1$ non-conformal repeller, this paper proves that there exists an ergodic measure of full Carathéodory singular dimension. For an average conformal hyperbolic set of a $C^1$ diffeomorphism, this paper constructs a Borel probability measure (with support strictly inside the repeller) of full Hausdorff dimension. If the average conformal hyperbolic set is of a $C^{1+\alpha }$ diffeomorphism, this paper shows that there exists an ergodic measure of maximal dimension.
We introduce a notion of sensitivity with respect to a continuous real-valued bounded map which provides a sufficient condition for a continuous transformation, acting on a Baire metric space, to exhibit a Baire generic subset of points with historic behavior (also known as irregular points). The applications of this criterion recover, and extend, several known theorems on the genericity of the irregular set, in addition to yielding a number of new results, including information on the irregular set of geodesic flows, in both negative and non-positive curvature, and semigroup actions.
We discuss a metric description of the divergence of a (projectively) Anosov flow in dimension 3, in terms of its associated expansion rates and give metric and contact geometric characterizations of when a projectively Anosov flow is Anosov. We then study the symmetries that the existence of an invariant volume form yields on the geometry of an Anosov flow, from various viewpoints of the theory of contact hyperbolas, Reeb dynamics, and Liouville geometry, and give characterizations of when an Anosov flow is volume preserving, in terms of those theories. We finally use our study to show that the bi-contact surgery operations of Salmoiraghi [Surgery on Anosov flows using bi-contact geometry. Preprint, 2021, arXiv:2104.07109; and Goodman surgery and projectively Anosov flows. Preprint, 2022, arXiv:2202.01328] can be applied in an arbitrary small neighborhood of a periodic orbit of any Anosov flow. In particular, we conclude that the Goodman surgery of Anosov flows can be performed using the bi-contact surgery operations of Salmoiraghi [Goodman surgery and projectively Anosov flows. Preprint, 2022, arXiv:2202.01328].
For a pseudo-Anosov flow $\varphi $ without perfect fits on a closed $3$-manifold, Agol–Guéritaud produce a veering triangulation $\tau $ on the manifold M obtained by deleting the singular orbits of $\varphi $. We show that $\tau $ can be realized in M so that its 2-skeleton is positively transverse to $\varphi $, and that the combinatorially defined flow graph $\Phi $ embedded in M uniformly codes the orbits of $\varphi $ in a precise sense. Together with these facts, we use a modified version of the veering polynomial, previously introduced by the authors, to compute the growth rates of the closed orbits of $\varphi $ after cutting M along certain transverse surfaces, thereby generalizing the work of McMullen in the fibered setting. These results are new even in the case where the transverse surface represents a class in the boundary of a fibered cone of M. Our work can be used to study the flow $\varphi $ on the original closed manifold. Applications include counting growth rates of closed orbits after cutting along closed transverse surfaces, defining a continuous, convex entropy function on the ‘positive’ cone in $H^1$ of the cut-open manifold, and answering a question of Leininger about the closure of the set of all stretch factors arising as monodromies within a single fibered cone of a $3$-manifold. This last application connects to the study of endperiodic automorphisms of infinite-type surfaces and the growth rates of their periodic points.
We derive upper and lower bounds for the Assouad and lower dimensions of self-affine measures in $\mathbb {R}^d$ generated by diagonal matrices and satisfying suitable separation conditions. The upper and lower bounds always coincide for $d=2,3$, yielding precise explicit formulae for those dimensions. Moreover, there are easy-to-check conditions guaranteeing that the bounds coincide for $d \geqslant 4$. An interesting consequence of our results is that there can be a ‘dimension gap’ for such self-affine constructions, even in the plane. That is, we show that for some self-affine carpets of ‘Barański type’ the Assouad dimension of all associated self-affine measures strictly exceeds the Assouad dimension of the carpet by some fixed $\delta>0$ depending only on the carpet. We also provide examples of self-affine carpets of ‘Barański type’ where there is no dimension gap and in fact the Assouad dimension of the carpet is equal to the Assouad dimension of a carefully chosen self-affine measure.
We construct one-dimensional foliations which are subfoliations of two-dimensional foliations in $3$-manifolds. The subfoliation is by quasigeodesics in each two-dimensional leaf, but it is not funnel: not all quasigeodesics share a common ideal point in most leaves.
For $k \geq 2$, we prove that in a $C^{1}$-open and $C^{k}$-dense set of some classes of $C^{k}$-Anosov flows, all Lyapunov exponents have multiplicity one with respect to appropriate measures. The classes are geodesic flows with equilibrium states of Holder-continuous potentials, volume-preserving flows, and all fiber-bunched Anosov flows with equilibrium states of Holder-continuous potentials.