To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we derive new differential Harnack estimates of Li–Yau type for positive smooth solutions to a class of nonlinear parabolic equations in the form
on smooth metric measure spaces where the metric and potential are time dependent and evolve under a $({\mathsf k},\, m)$-super Perelman–Ricci flow. A number of consequences, most notably, a parabolic Harnack inequality, a class of Hamilton type global curvature-free estimates and a general Liouville type theorem together with some consequences are established. Some special cases are presented to illustrate the strength of the results.
Let $\pi$ be a discrete group, and let $G$ be a compact-connected Lie group. Then, there is a map $\Theta \colon \mathrm {Hom}(\pi,G)_0\to \mathrm {map}_*(B\pi,BG)_0$ between the null components of the spaces of homomorphisms and based maps, which sends a homomorphism to the induced map between classifying spaces. Atiyah and Bott studied this map for $\pi$ a surface group, and showed that it is surjective in rational cohomology. In this paper, we prove that the map $\Theta$ is surjective in rational cohomology for $\pi =\mathbb {Z}^m$ and the classical group $G$ except for $SO(2n)$, and that it is not surjective for $\pi =\mathbb {Z}^m$ with $m\ge 3$ and $G=SO(2n)$ with $n\ge 4$. As an application, we consider the surjectivity of the map $\Theta$ in rational cohomology for $\pi$ a finitely generated nilpotent group. We also consider the dimension of the cokernel of the map $\Theta$ in rational homotopy groups for $\pi =\mathbb {Z}^m$ and the classical groups $G$ except for $SO(2n)$.
Let $G$ be a compact Abelian group and $E$ a subset of the group $\widehat {G}$ of continuous characters of $G$. We study Arens regularity-related properties of the ideals $L_E^1(G)$ of $L^1(G)$ that are made of functions whose Fourier transform is supported on $E\subseteq \widehat {G}$. Arens regularity of $L_E^1(G)$, the centre of $L_E^1(G)^{\ast \ast }$ and the size of $L_E^1(G)^\ast /\mathcal {WAP}(L_E^1(G))$ are studied. We establish general conditions for the regularity of $L_E^1(G)$ and deduce from them that $L_E^1(G)$ is not strongly Arens irregular if $E$ is a small-2 set (i.e. $\mu \ast \mu \in L^1(G)$ for every $\mu \in M_E^1(G)$), which is not a $\Lambda (1)$-set, and it is extremely non-Arens regular if $E$ is not a small-2 set. We deduce also that $L_E^1(G)$ is not Arens regular when $\widehat {G}\setminus E$ is a Lust-Piquard set.
We show that a certain category of bimodules over a finite-dimensional quiver algebra known as a type B zigzag algebra is a quotient category of the category of type B Soergel bimodules. This leads to an alternate proof of Rouquier’s conjecture on the faithfulness of the 2-braid groups for type B.
In this paper, we address two boundary cases of the classical Kazdan–Warner problem. More precisely, we consider the problem of prescribing the Gaussian and boundary geodesic curvature on a disk of $\mathbb {R}^2$, and the scalar and mean curvature on a ball in higher dimensions, via a conformal change of the metric. We deal with the case of negative interior curvature and positive boundary curvature. Using a Ljapunov–Schmidt procedure, we obtain new existence results when the prescribed functions are close to constants.
We find closed formulas for arbitrarily high mixed moments of characteristic polynomials of the Alternative Circular Unitary Ensemble, as well as closed formulas for the averages of ratios of characteristic polynomials in this ensemble. A comparison is made to analogous results for the Circular Unitary Ensemble. Both moments and ratios are studied via symmetric function theory and a general formula of Borodin-Olshanski-Strahov.
Katok’s special representation theorem states that any free ergodic measure- preserving $\mathbb {R}^{d}$-flow can be realized as a special flow over a $\mathbb {Z}^{d}$-action. It provides a multidimensional generalization of the ‘flow under a function’ construction. We prove the analog of Katok’s theorem in the framework of Borel dynamics and show that, likewise, all free Borel $\mathbb {R}^{d}$-flows emerge from $\mathbb {Z}^{d}$-actions through the special flow construction using bi-Lipschitz cocycles.
We prove $\times a \times b$ measure rigidity for multiplicatively independent pairs when $a\in \mathbb {N}$ and $b>1$ is a ‘specified’ real number (the b-expansion of $1$ has a tail or bounded runs of $0$s) under a positive entropy condition. This is done by proving a mean decay of the Fourier series of the point masses average along $\times b$ orbits. We also prove a quantitative version of this decay under stronger conditions on the $\times a$ invariant measure. The quantitative version together with the $\times b$ invariance of the limit measure is a step toward a general Host-type pointwise equidistribution theorem in which the equidistribution is for Parry measure instead of Lebesgue. We show that finite memory length measures on the a-shift meet the mentioned conditions for mean convergence. Our main proof relies on techniques of Hochman.
The Hamiltonian of a conventional quantum system is Hermitian, which ensures real spectra of the Hamiltonian and unitary evolution of the system. However, real spectra are just the necessary conditions for a Hamiltonian to be Hermitian. In this paper, we discuss the metric operators for pseudo-Hermitian Hamiltonian which is similar to its adjoint. We first present some properties of the metric operators for pseudo-Hermitian Hamiltonians and obtain a sufficient and necessary condition for an invertible operator to be a metric operator for a given pseudo-Hermitian Hamiltonian. When the pseudo-Hermitian Hamiltonian has real spectra, we provide a new method such that any given metric operator can be transformed into the same positive-definite one and the new inner product with respect to the positive-definite metric operator is well defined. Finally, we illustrate the results obtained with an example.
We show that there is a distortion element in a finitely generated subgroup G of the automorphism group of the full shift, namely an element of infinite order whose word norm grows polylogarithmically. As a corollary, we obtain a lower bound on the entropy dimension of any subshift containing a copy of G, and that a sofic shift’s automorphism group contains a distortion element if and only if the sofic shift is uncountable. We obtain also that groups of Turing machines and the higher-dimensional Brin–Thompson groups $mV$ admit distortion elements; in particular, $2V$ (unlike V) does not admit a proper action on a CAT$(0)$ cube complex. In each case, the distortion element roughly corresponds to the SMART machine of Cassaigne, Ollinger, and Torres-Avilés [A small minimal aperiodic reversible Turing machine. J. Comput. System Sci.84 (2017), 288–301].
In this paper, we study consensus-based optimisation (CBO), a versatile, flexible and customisable optimisation method suitable for performing nonconvex and nonsmooth global optimisations in high dimensions. CBO is a multi-particle metaheuristic, which is effective in various applications and at the same time amenable to theoretical analysis thanks to its minimalistic design. The underlying dynamics, however, is flexible enough to incorporate different mechanisms widely used in evolutionary computation and machine learning, as we show by analysing a variant of CBO which makes use of memory effects and gradient information. We rigorously prove that this dynamics converges to a global minimiser of the objective function in mean-field law for a vast class of functions under minimal assumptions on the initialisation of the method. The proof in particular reveals how to leverage further, in some applications advantageous, forces in the dynamics without loosing provable global convergence. To demonstrate the benefit of the herein investigated memory effects and gradient information in certain applications, we present numerical evidence for the superiority of this CBO variant in applications such as machine learning and compressed sensing, which en passant widen the scope of applications of CBO.
The main purpose of this paper is to prove Hörmander’s $L^p$–$L^q$ boundedness of Fourier multipliers on commutative hypergroups. We carry out this objective by establishing the Paley inequality and Hausdorff–Young–Paley inequality for commutative hypergroups. We show the $L^p$–$L^q$ boundedness of the spectral multipliers for the generalised radial Laplacian by examining our results on Chébli–Trimèche hypergroups. As a consequence, we obtain embedding theorems and time asymptotics for the $L^p$–$L^q$ norms of the heat kernel for generalised radial Laplacian.
For a principal ideal domain $A$, the Latimer–MacDuffee correspondence sets up a bijection between the similarity classes of matrices in $\textrm{M}_{n}(A)$ with irreducible characteristic polynomial $f(x)$ and the ideal classes of the order $A[x]/(f(x))$. We prove that when $A[x]/(f(x))$ is maximal (i.e. integrally closed, i.e. a Dedekind domain), then every similarity class contains a representative that is, in a sense, close to being a companion matrix. The first step in the proof is to show that any similarity class corresponding to an ideal (not necessarily prime) of degree one contains a representative of the desired form. The second step is a previously unpublished result due to Lenstra that implies that when $A[x]/(f(x))$ is maximal, every ideal class contains an ideal of degree one.
Several finite complex reflection groups have a braid group that is isomorphic to a torus knot group. The reflection group is obtained from the torus knot group by declaring meridians to have order k for some $k\geq 2$, and meridians are mapped to reflections. We study all possible quotients of torus knot groups obtained by requiring meridians to have finite order. Using the theory of J-groups of Achar and Aubert [‘On rank 2 complex reflection groups’, Comm. Algebra36(6) (2008), 2092–2132], we show that these groups behave like (in general, infinite) complex reflection groups of rank two. The large family of ‘toric reflection groups’ that we obtain includes, among others, all finite complex reflection groups of rank two with a single conjugacy class of reflecting hyperplanes, as well as Coxeter’s truncations of the $3$-strand braid group. We classify these toric reflection groups and explain why the corresponding torus knot group can be naturally considered as its braid group. In particular, this yields a new infinite family of reflection-like groups admitting braid groups that are Garside groups. Moreover, we show that a toric reflection group has cyclic center by showing that the quotient by the center is isomorphic to the alternating subgroup of a Coxeter group of rank three. To this end we use the fact that the center of the alternating subgroup of an irreducible, infinite Coxeter group of rank at least three is trivial. Several ingredients of the proofs are purely Coxeter-theoretic, and might be of independent interest.
The concurrency of edges, quantified by the number of edges that share a common node at a given time point, may be an important determinant of epidemic processes in temporal networks. We propose theoretically tractable Markovian temporal network models in which each edge flips between the active and inactive states in continuous time. The different models have different amounts of concurrency while we can tune the models to share the same statistics of edge activation and deactivation (and hence the fraction of time for which each edge is active) and the structure of the aggregate (i.e., static) network. We analytically calculate the amount of concurrency of edges sharing a node for each model. We then numerically study effects of concurrency on epidemic spreading in the stochastic susceptible-infectious-susceptible and susceptible-infectious-recovered dynamics on the proposed temporal network models. We find that the concurrency enhances epidemic spreading near the epidemic threshold, while this effect is small in many cases. Furthermore, when the infection rate is substantially larger than the epidemic threshold, the concurrency suppresses epidemic spreading in a majority of cases. In sum, our numerical simulations suggest that the impact of concurrency on enhancing epidemic spreading within our model is consistently present near the epidemic threshold but modest. The proposed temporal network models are expected to be useful for investigating effects of concurrency on various collective dynamics on networks including both infectious and other dynamics.
In this paper, we prove uniform bounds for $\operatorname {GL}(3)\times \operatorname {GL}(2) \ L$-functions in the $\operatorname {GL}(2)$ spectral aspect and the t aspect by a delta method. More precisely, let $\phi $ be a Hecke–Maass cusp form for $\operatorname {SL}(3,\mathbb {Z})$ and f a Hecke–Maass cusp form for $\operatorname {SL}(2,\mathbb {Z})$ with the spectral parameter $t_f$. Then for $t\in \mathbb {R}$ and any $\varepsilon>0$, we have
We consider two questions on the geometry of Lipschitz-free $p$-spaces $\mathcal {F}_p$, where $0< p\leq 1$, over subsets of finite-dimensional vector spaces. We solve an open problem and show that if $(\mathcal {M}, \rho )$ is an infinite doubling metric space (e.g. an infinite subset of an Euclidean space), then $\mathcal {F}_p (\mathcal {M}, \rho ^\alpha )\simeq \ell _p$ for every $\alpha \in (0,\,1)$ and $0< p\leq 1$. An upper bound on the Banach–Mazur distance between the spaces $\mathcal {F}_p ([0, 1]^d, |\cdot |^\alpha )$ and $\ell _p$ is given. Moreover, we tackle a question due to Albiac et al. [4] and expound the role of $p$, $d$ for the Lipschitz constant of a canonical, locally coordinatewise affine retraction from $(K, |\cdot |_1)$, where $K=\cup _{Q\in \mathcal {R}} Q$ is a union of a collection $\emptyset \neq \mathcal {R} \subseteq \{ Rw + R[0,\,1]^d: w\in \mathbb {Z}^d\}$ of cubes in $\mathbb {R}^d$ with side length $R>0$, into the Lipschitz-free $p$-space $\mathcal {F}_p (V, |\cdot |_1)$ over their vertices.
Let $(M,g,J)$ be a closed Kähler manifold with negative sectional curvature and complex dimension $m := \dim _{\mathbb {C}} M \geq 2$. In this article, we study the unitary frame flow, that is, the restriction of the frame flow to the principal $\mathrm {U}(m)$-bundle $F_{\mathbb {C}}M$ of unitary frames. We show that if $m \geq 6$ is even and $m \neq 28$, there exists $\unicode{x3bb} (m) \in (0, 1)$ such that if $(M, g)$ has negative $\unicode{x3bb} (m)$-pinched holomorphic sectional curvature, then the unitary frame flow is ergodic and mixing. The constants $\unicode{x3bb} (m)$ satisfy $\unicode{x3bb} (6) = 0.9330...$, $\lim _{m \to +\infty } \unicode{x3bb} (m) = {11}/{12} = 0.9166...$, and $m \mapsto \unicode{x3bb} (m)$ is decreasing. This extends to the even-dimensional case the results of Brin and Gromov [On the ergodicity of frame flows. Invent. Math.60(1) (1980), 1–7] who proved ergodicity of the unitary frame flow on negatively curved compact Kähler manifolds of odd complex dimension.
We consider the long-time behaviour of a West Nile virus (WNv) model consisting of a reaction–diffusion system with free boundaries. Such a model describes the spreading of WNv with the free boundary representing the expanding front of the infected region, which is a time-dependent interval $[g(t), h(t)]$ in the model (Lin and Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary. J. Math. Biol. 75, 1381–1409, 2017). The asymptotic spreading speed of the front has been determined in Wang et al. (Spreading speed for a West Nile virus model with free boundary. J. Math. Biol. 79, 433–466, 2019) by making use of the associated semi-wave solution, namely $\lim _{t\to \infty } h(t)/t=\lim _{t\to \infty }[\!-g(t)/t]=c_\nu$, with $c_\nu$ the speed of the semi-wave solution. In this paper, by employing new techniques, we significantly improve the estimate in Wang et al. (Spreading speed for a West Nile virus model with free boundary. J. Math. Biol. 79, 433–466, 2019): we show that $h(t)-c_\nu t$ and $g(t)+c_\nu t$ converge to some constants as $t\to \infty$, and the solution of the model converges to the semi-wave solution. The results also apply to a wide class of analogous Ross–MacDonold epidemic models.