To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The holonomic rank of the A-hypergeometric system MA(β) is the degree of the toric ideal IA for generic parameters; in general, this is only a lower bound. To the semigroup ring of A we attach the ranking arrangement and use this algebraic invariant and the exceptional arrangement of non-generic parameters to construct a combinatorial formula for the rank jump of MA(β). As consequences, we obtain a refinement of the stratification of the exceptional arrangement by the rank of MA(β) and show that the Zariski closure of each of its strata is a union of translates of linear subspaces of the parameter space. These results hold for generalized A-hypergeometric systems as well, where the semigroup ring of A is replaced by a non-trivial weakly toric module M⊆ℂ[ℤA] . We also provide a direct proof of the main result in [M. Saito, Isomorphism classes of A-hypergeometric systems, Compositio Math. 128 (2001), 323–338] regarding the isomorphism classes of MA (β) .
We prove a version of Kontsevich’s formality theorem for two subspaces (branes) of a vector space X. The result implies, in particular, that the Kontsevich deformation quantizations of S(X*) and ∧(X) associated with a quadratic Poisson structure are Koszul dual. This answers an open question in Shoikhet’s recent paper on Koszul duality in deformation quantization.
We describe a general setting for the definition of semi-infinite cohomology of finite-dimensional graded algebras, and provide an interpretation of such cohomology in terms of derived categories. We apply this interpretation to compute semi-infinite cohomology of some modules over the small quantum group at a root of unity, generalizing an earlier result of Arkhipov (posed as a conjecture by B. Feigin).
Let G be a discrete group.We give a decomposition theorem for the Hochschild cohomology of l1(G) with coefficients in certain G-modules. Using this we show that if G is commutative-transitive, the canonical inclusion of bounded cohomology of G into simplicial cohomology of l1(G) is an isomorphism.
In this paper we construct, for F1 and F2 subbundles of a vector bundle E, a ‘Koszul duality’ equivalence between derived categories of 𝔾m-equivariant coherent(dg-)sheaves on the derived intersection , and the corresponding derived intersection . We also propose applications to Hecke algebras.
In basic homological algebra, projective, injective and flat modules play an important and fundamental role. In this paper, we discuss some properties of Gorenstein projective, injective and flat modules and study some connections between Gorenstein injective and Gorenstein flat modules. We also investigate some connections between Gorenstein projective, injective and flat modules under change of rings.
We investigate cluster-tilting objects (and subcategories) in triangulated 2-Calabi–Yau and related categories. In particular, we construct a new class of such categories related to preprojective algebras of non-Dynkin quivers associated with elements in the Coxeter group. This class of 2-Calabi–Yau categories contains, as special cases, the cluster categories and the stable categories of preprojective algebras of Dynkin graphs. For these 2-Calabi–Yau categories, we construct cluster-tilting objects associated with each reduced expression. The associated quiver is described in terms of the reduced expression. Motivated by the theory of cluster algebras, we formulate the notions of (weak) cluster structure and substructure, and give several illustrations of these concepts. We discuss connections with cluster algebras and subcluster algebras related to unipotent groups, in both the Dynkin and non-Dynkin cases.
We extend the group theoretic notions of transfer and stable elements to graded centres of triangulated categories. When applied to the centre Z*(Db(B) of the derived bounded category of a block algebra B we show that the block cohomology H*(B) is isomorphic to a quotient of a certain subalgebra of stable elements of Z*(Db(B)) by some nilpotent ideal, and that a quotient of Z*(Db(B)) by some nilpotent ideal is Noetherian over H*(B).
We describe explicitly the Voevodsky's triangulated category of motives (and give a ‘differential graded enhancement’ of it). This enables us to able to verify that DMgm ℚ is (anti)isomorphic to Hanamura's (k).
We obtain a description of all subcategories (including those of Tate motives) and of all localizations of . We construct a conservative weight complex functor ; t gives an isomorphism . A motif is mixed Tate whenever its weight complex is. Over finite fields the Beilinson–Parshin conjecture holds if and only if tℚ is an equivalence.
For a realization D of we construct a spectral sequence S (the spectral sequence of motivic descent) converging to the cohomology of an arbitrary motif X. S is ‘motivically functorial’; it gives a canonical functorial weight filtration on the cohomology of D(X). For the ‘standard’ realizations this filtration coincides with the usual one (up to a shift of indices). For the motivic cohomology this weight filtration is non-trivial and appears to be quite new.
We define the (rational) length of a motif M; modulo certain ‘standard’ conjectures this length coincides with the maximal length of the weight filtration of the singular cohomology of M.
Let R be a left coherent ring, S a right coherent ring and RU a generalized tilting module, with S=End(RU) satisfying the condition that each finitely presented left R-module X with ExtRi(X,U)=0 for any i≥1 is U-torsionless. If M is a finitely presented left R-module such that ExtRi(M,U)=0 for any i≥0 with (where n is a nonnegative integer), then and ExtSi(ExtRn(M,U),U)=0 for any i≥0 with . A duality is thus induced between the category of finitely presented holonomic left R-modules and the category of finitely presented holonomic right S-modules.
Let Aq=k〈x,y〉/(x2,xy+qyx,y2) be the quantum exterior algebra over a field k with , and let Λq be the ℤ2×ℤ2-Galois covering of Aq. In this paper the minimal projective bimodule resolution of Λq is constructed explicitly, and from it we can calculate the k-dimensions of all Hochschild homology and cohomology groups of Λq. Moreover, the cyclic homology of Λq can be calculated in the case where the underlying field is of characteristic zero.
A ring R is said to be a Baer (respectively, quasi-Baer) ring if the left annihilator of any nonempty subset (respectively, any ideal) of R is generated by an idempotent. It is first proved that for a ring R and a group G, if a group ring RG is (quasi-) Baer then so is R; if in addition G is finite then |G|–1 € R. Counter examples are then given to answer Hirano's question which asks whether the group ring RG is (quasi-) Baer if R is (quasi-) Baer and G is a finite group with |G|–1 € R. Further, efforts have been made towards answering the question of when the group ring RG of a finite group G is (quasi-) Baer, and various (quasi-) Baer group rings are identified. For the case where G is a group acting on R as automorphisms, some sufficient conditions are given for the fixed ring RG to be Baer.
Let R be a ring. A right R-module C is called a cotorsion module if Ext1R (F, C) = 0 for any flat right R-module F. In this paper, we first characterize those rings satisfying the condition that every cotorsion right (left) module is injective with respect to a certain class of right (left) ideals. Then we study relative pure-injective modules and their relations with cotorsion modules.
For a module M Over an Artin algebra R, we discuss the question of whether the Yoneda extension algebra Ext(M, M) is finitely generated as an algebra. We give an answer for bounded modules M. (These are modules whose syzygies have direct summands of bounded lengths.)