To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let Λ be a finite-dimensional algebra and G be a finite group whose elements act on Λ as algebra automorphisms. Assume that Λ has a complete set E of primitive orthogonal idempotents, closed under the action of a Sylow p-subgroup S ≤ G. If the action of S on E is free, we show that the skew group algebra Λ G and Λ have the same finitistic dimension, and have the same strong global dimension if the fixed algebra ΛS is a direct summand of the ΛS-bimodule Λ. Using a homological characterization of piecewise hereditary algebras proved by Happel and Zacharia, we deduce a criterion for Λ G to be piecewise hereditary.
We give sufficient conditions for a Frobenius category to be equivalent to the category of Gorenstein projective modules over an Iwanaga–Gorenstein ring. We then apply this result to the Frobenius category of special Cohen–Macaulay modules over a rational surface singularity, where we show that the associated stable category is triangle equivalent to the singularity category of a certain discrepant partial resolution of the given rational singularity. In particular, this produces uncountably many Iwanaga–Gorenstein rings of finite Gorenstein projective type. We also apply our method to representation theory, obtaining Auslander–Solberg and Kong type results.
We introduce a method named homogeneous PBW deformation that preserves the regularity and some other homological properties for multigraded algebras. The method is used to produce Artin–Schelter regular algebras without the hypothesis on grading.
In this paper we prove a version of curved Koszul duality for $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathbb{Z}/2\mathbb{Z}$-graded curved coalgebras and their cobar differential graded algebras. A curved version of the homological perturbation lemma is also obtained as a useful technical tool for studying curved (co)algebras and precomplexes. The results of Koszul duality can be applied to study the category of matrix factorizations $\mathsf{MF}(R,W)$. We show how Dyckerhoff’s generating results fit into the framework of curved Koszul duality theory. This enables us to clarify the relationship between the Borel–Moore Hochschild homology of curved (co)algebras and the ordinary Hochschild homology of the category $\mathsf{MF}(R,W)$. Similar results are also obtained in the orbifold case and in the graded case.
We consider the natural $A_{\infty }$-structure on the $\mathrm{Ext}$-algebra $\mathrm{Ext}^*(G,G)$ associated with the coherent sheaf $G=\mathcal{O}_C\oplus \mathcal{O}_{p_1}\oplus \cdots \oplus \mathcal{O}_{p_n}$ on a smooth projective curve $C$, where $p_1,\ldots,p_n\in C$ are distinct points. We study the homotopy class of the product $m_3$. Assuming that $h^0(p_1+\cdots +p_n)=1$, we prove that $m_3$ is homotopic to zero if and only if $C$ is hyperelliptic and the points $p_i$ are Weierstrass points. In the latter case we show that $m_4$ is not homotopic to zero, provided the genus of $C$ is greater than $1$. In the case $n=g$ we prove that the $A_{\infty }$-structure is determined uniquely (up to homotopy) by the products $m_i$ with $i\le 6$. Also, in this case we study the rational map $\mathcal{M}_{g,g}\to \mathbb{A}^{g^2-2g}$ associated with the homotopy class of $m_3$. We prove that for $g\ge 6$ it is birational onto its image, while for $g\le 5$ it is dominant. We also give an interpretation of this map in terms of tangents to $C$ in the canonical embedding and in the projective embedding given by the linear series $|2(p_1+\cdots +p_g)|$.
Let $\mathfrak{F}$ be a locally compact nonarchimedean field with residue characteristic $p$, and let $\mathrm{G} $ be the group of $\mathfrak{F}$-rational points of a connected split reductive group over $\mathfrak{F}$. For $k$ an arbitrary field of any characteristic, we study the homological properties of the Iwahori–Hecke $k$-algebra ${\mathrm{H} }^{\prime } $ and of the pro-$p$ Iwahori–Hecke $k$-algebra $\mathrm{H} $ of $\mathrm{G} $. We prove that both of these algebras are Gorenstein rings with self-injective dimension bounded above by the rank of $\mathrm{G} $. If $\mathrm{G} $ is semisimple, we also show that this upper bound is sharp, that both $\mathrm{H} $ and ${\mathrm{H} }^{\prime } $ are Auslander–Gorenstein, and that there is a duality functor on the finite length modules of $\mathrm{H} $ (respectively ${\mathrm{H} }^{\prime } $). We obtain the analogous Gorenstein and Auslander–Gorenstein properties for the graded rings associated to $\mathrm{H} $ and ${\mathrm{H} }^{\prime } $.
When $k$ has characteristic $p$, we prove that in ‘most’ cases $\mathrm{H} $ and ${\mathrm{H} }^{\prime } $ have infinite global dimension. In particular, we deduce that the category of smooth $k$-representations of $\mathrm{G} = {\mathrm{PGL} }_{2} ({ \mathbb{Q} }_{p} )$ generated by their invariant vectors under the pro-$p$ Iwahori subgroup has infinite global dimension (at least if $k$ is algebraically closed).
In this article, we introduce the notion of the uniquely $I$-clean ring and show that, if $R$ is a ring and $I$ is an ideal of $R$ then $R$ is uniquely $I$-clean if and only if ($R/ I$ is Boolean and idempotents lift uniquely modulo $I$) if and only if (for each $a\in R$ there exists a central idempotent $e\in R$ such that $e- a\in I$ and $I$ is idempotent-free). We examine when ideal extension is uniquely clean relative to an ideal. Also we obtain conditions on a ring $R$ and an ideal $I$ of $R$ under which uniquely $I$-clean rings coincide with uniquely clean rings. Further we prove that a ring $R$ is uniquely nil-clean if and only if ($N(R)$ is an ideal of $R$ and $R$ is uniquely $N(R)$-clean) if and only if $R$ is both uniquely clean and nil-clean if and only if ($R$ is an abelian exchange ring with $J(R)$ nil and every quasiregular element is uniquely clean). We also show that $R$ is a uniquely clean ring such that every prime ideal of $R$ is maximal if and only if $R$ is uniquely nil-clean ring and $N(R)= {\mathrm{Nil} }_{\ast } (R)$.
Here we prove that, for a $2$-primal ring $R$, the Laurent series ring $R((x))$ is a clean ring if and only if $R$ is a semiregular ring with $J(R)$ nil. This disproves the claim in K. I. Sonin [‘Semiprime and semiperfect rings of Laurent series’, Math. Notes60 (1996), 222–226] that the Laurent series ring over a clean ring is again clean. As an application of the result, it is shown that, for a $2$-primal ring $R$, $R((x))$ is semiperfect if and only if $R((x))$ is semiregular if and only if $R$ is semiperfect with $J(R)$ nil.
In 1977 Hartwig and Luh asked whether an element $a$ in a Dedekind-finite ring $R$ satisfying $aR= {a}^{2} R$ also satisfies $Ra= R{a}^{2} $. In this paper, we answer this question in the negative. We also prove that if $a$ is an element of a Dedekind-finite exchange ring $R$ and $aR= {a}^{2} R$, then $Ra= R{a}^{2} $. This gives an easier proof of Dischinger’s theorem that left strongly $\pi $-regular rings are right strongly $\pi $-regular, when it is already known that $R$ is an exchange ring.
We give a negative answer to the question raised by Mart Abel about whether his proposed definition of ${K}_{0} $ and ${K}_{1} $ groups in terms of quasi multiplication is indeed equivalent to the established ones in algebraic $K$-theory.
Let $\Lambda $ be an Auslander 1-Gorenstein Artinian algebra with global dimension two. If $\Lambda $ admits a trivial maximal 1-orthogonal subcategory of $\text{mod } \Lambda $, then, for any indecomposable module $M\in \text{mod } \Lambda $, the projective dimension of $M$ is equal to one if and only if its injective dimension is also equal to one, and $M$ is injective if the projective dimension of $M$ is equal to two. In this case, we further get that $\Lambda $ is a tilted algebra.
We study the top left derived functors of the generalised $I$-adic completion and obtain equivalent properties concerning the vanishing or nonvanishing of the modules ${L}_{i} {\Lambda }_{I} (M, N)$. We also obtain some results for the sets $\text{Coass} ({L}_{i} {\Lambda }_{I} (M; N))$ and ${\text{Cosupp} }_{R} ({ H}_{i}^{I} (M; N))$.
We show that if $A$ and $H$ are Hopf algebras that have equivalent tensor categories of comodules, then one can transport what we call a free Yetter–Drinfeld resolution of the counit of $A$ to the same kind of resolution for the counit of $H$, exhibiting in this way strong links between the Hochschild homologies of $A$ and $H$. This enables us to obtain a finite free resolution of the counit of $\mathcal {B}(E)$, the Hopf algebra of the bilinear form associated with an invertible matrix $E$, generalizing an earlier construction of Collins, Härtel and Thom in the orthogonal case $E=I_n$. It follows that $\mathcal {B}(E)$ is smooth of dimension 3 and satisfies Poincaré duality. Combining this with results of Vergnioux, it also follows that when $E$ is an antisymmetric matrix, the $L^2$-Betti numbers of the associated discrete quantum group all vanish. We also use our resolution to compute the bialgebra cohomology of $\mathcal {B}(E)$in the cosemisimple case.
It follows from methods of B. Steinberg, extended to inverse categories, that finite inverse category algebras are isomorphic to their associated groupoid algebras; in particular, they are symmetric algebras with canonical symmetrizing forms.We deduce the existence of transfer maps in cohomology and Hochschild cohomology from certain inverse subcategories. This is in part motivated by the observation that, for certain categories , being a Mackey functor on is equivalent to being extendible to a suitable inverse category containing . We further show that extensions of inverse categories by abelian groups are again inverse categories.
Let be a finite category and let k be a field. We consider the category algebra and show that -mod is closed symmetric monoidal. Through comparing with a co-commutative bialgebra, we exhibit the similarities and differences between them in terms of homological properties. In particular, we give a module-theoretic approach to the multiplicative structure of the cohomology rings of small categories. As an application, we prove that the Hochschild cohomology rings of a certain type of finite category algebras are finitely generated.
In this paper we extend the notion of FP-injective modules to that of complexes and characterize such complexes. We show that some characterizations similar to those for injective complexes exist for FP-injective complexes. We also introduce and study the notion of an FP-injective dimension associated to every complex of left R-modules over an arbitrary ring. We show that there is a close connection between the FP-injective dimension of complexes and flat dimension.
This work establishes a comparison between functions on derived loop spaces (Toën and Vezzosi, Chern character, loop spaces and derived algebraic geometry, in Algebraic topology: the Abel symposium 2007, Abel Symposia, vol. 4, eds N. Baas, E. M. Friedlander, B. Jahren and P. A. Østvær (Springer, 2009), ISBN:978-3-642-01199-3) and de Rham theory. If A is a smooth commutative k-algebra and k has characteristic 0, we show that two objects, S1⊗A and ϵ(A), determine one another, functorially in A. The object S1⊗A is the S1-equivariant simplicial k-algebra obtained by tensoring A by the simplicial group S1 :=Bℤ, while the object ϵ(A)is the de Rham algebra of A, endowed with the de Rham differential, and viewed as a ϵ-dg-algebra (see the main text). We define an equivalence φ between the homotopy theory of simplicial commutative S1-equivariant k-algebras and the homotopy theory of ϵ-dg-algebras, and we show the existence of a functorial equivalence ϕ(S1 ⊗A)∼ϵ(A) . We deduce from this the comparison mentioned above, identifying the S1-equivariant functions on the derived loop space LX of a smooth k-scheme X with the algebraic de Rham cohomology of X/k. As corollaries, we obtain functorial and multiplicative versions of decomposition theorems for Hochschild homology (in the spirit of Hochschild–Kostant–Rosenberg) for arbitrary semi-separated k-schemes. By construction, these decompositions are moreover compatible with the S1-action on the Hochschild complex, on one hand, and with the de Rham differential, on the other hand.
Several characterizations are given of (Zelmanowitz) regular modules among the torsionless modules, the locally projective modules, the nonsingular modules, and modules where certain submodules are pure. Along the way, a version of the unimodular row lemma for torsionless modules is given, and it is shown that a regular ring is left self-injective if and only if every nonsingular left module is regular.
We discuss some basic properties of the graded centre of a triangulated category and compute examples arising in representation theory of finite-dimensional algebras.
In a recent paper, Iyama and Yoshino considered two interesting examples of isolated singularities over which it is possible to classify the indecomposable maximal Cohen–Macaulay modules in terms of linear algebra data. In this paper, we present two new approaches to these examples. In the first approach we give a relation with cluster categories. In the second approach we use Orlov’s result on the graded singularity category.