We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that a $\mathbb{P}$-object and simple configurations of $\mathbb{P}$-objects have a formal derived endomorphism algebra. Hence the triangulated category (classically) generated by such objects is independent of the ambient triangulated category. We also observe that the category generated by the structure sheaf of a smooth projective variety over the complex numbers only depends on its graded cohomology algebra.
We show a precise formula, in the form of a monomial, for certain families of parabolic Kazhdan–Lusztig polynomials of the symmetric group. The proof stems from results of Lapid–Mínguez on irreducibility of products in the Bernstein–Zelevinski ring. By quantizing those results into a statement on quantum groups and their canonical bases, we obtain identities of coefficients of certain transition matrices that relate Kazhdan–Lusztig polynomials to their parabolic analogues. This affirms some basic cases of conjectures raised recently by Lapid.
We give a proof of the formality conjecture of Kaledin and Lehn: on a complex projective K3 surface, the differential graded (DG) algebra $\operatorname{RHom}^{\bullet }(F,F)$ is formal for any sheaf $F$ polystable with respect to an ample line bundle. Our main tool is the uniqueness of the DG enhancement of the bounded derived category of coherent sheaves. We also extend the formality result to derived objects that are polystable with respect to a generic Bridgeland stability condition.
In this article, we consider a twisted partial action $\unicode[STIX]{x1D6FC}$ of a group $G$ on an associative ring $R$ and its associated partial crossed product $R\ast _{\unicode[STIX]{x1D6FC}}^{w}G$. We provide necessary and sufficient conditions for the commutativity of $R\ast _{\unicode[STIX]{x1D6FC}}^{w}G$ when the twisted partial action $\unicode[STIX]{x1D6FC}$ is unital. Moreover, we study necessary and sufficient conditions for the simplicity of $R\ast _{\unicode[STIX]{x1D6FC}}^{w}G$ in the following cases: (i) $G$ is abelian; (ii) $R$ is maximal commutative in $R\ast _{\unicode[STIX]{x1D6FC}}^{w}G$; (iii) $C_{R\ast _{\unicode[STIX]{x1D6FC}}^{w}G}(Z(R))$ is simple; (iv) $G$ is hypercentral. When $R=C_{0}(X)$ is the algebra of continuous functions defined on a locally compact and Hausdorff space $X$, with complex values that vanish at infinity, and $C_{0}(X)\ast _{\unicode[STIX]{x1D6FC}}G$ is the associated partial skew group ring of a partial action $\unicode[STIX]{x1D6FC}$ of a topological group $G$ on $C_{0}(X)$, we study the simplicity of $C_{0}(X)\ast _{\unicode[STIX]{x1D6FC}}G$ by using topological properties of $X$ and the results about the simplicity of $R\ast _{\unicode[STIX]{x1D6FC}}^{w}G$.
For any central simple algebra over a field F which contains a maximal subfield M with non-trivial automorphism group G = AutF(M), G is solvable if and only if the algebra contains a finite chain of subalgebras which are generalized cyclic algebras over their centers (field extensions of F) satisfying certain conditions. These subalgebras are related to a normal subseries of G. A crossed product algebra F is hence solvable if and only if it can be constructed out of such a finite chain of subalgebras. This result was stated for division crossed product algebras by Petit and overlaps with a similar result by Albert which, however, was not explicitly stated in these terms. In particular, every solvable crossed product division algebra is a generalized cyclic algebra over F.
Let ${\mathcal{R}}$ be a small preadditive category, viewed as a “ring with several objects.” A right${\mathcal{R}}$-module is an additive functor from ${\mathcal{R}}^{\text{op}}$ to the category $Ab$ of abelian groups. We show that every hereditary torsion theory on the category $({\mathcal{R}}^{\text{op}},Ab)$ of right ${\mathcal{R}}$-modules must be differential.
In order to better unify the tilting theory and the Auslander–Reiten theory, Xi introduced a general transpose called the relative transpose. Originating from this, we introduce and study the cotranspose of modules with respect to a left A-module T called n-T-cotorsion-free modules. Also, we give many properties and characteristics of n-T-cotorsion-free modules under the help of semi-Wakamatsu-tilting modules AT.
This paper is about rings $R$ for which every element is a sum of a tripotent and an element from the Jacobson radical $J(R)$. These rings are called semi-tripotent rings. Examples include Boolean rings, strongly nil-clean rings, strongly 2-nil-clean rings, and semi-boolean rings. Here, many characterizations of semi-tripotent rings are obtained. Necessary and sufficient conditions for a Morita context (respectively, for a group ring of an abelian group or a locally finite nilpotent group) to be semi-tripotent are proved.
We introduce the class of partially invertible modules and show that it is an inverse category which we call the Picard inverse category. We use this category to generalize the classical construction of crossed products to, what we call, generalized epsilon-crossed products and show that these coincide with the class of epsilon-strongly groupoid-graded rings. We then use generalized epsilon-crossed groupoid products to obtain a generalization, from the group-graded situation to the groupoid-graded case, of the bijection from a certain second cohomology group, defined by the grading and the functor from the groupoid in question to the Picard inverse category, to the collection of equivalence classes of rings epsilon-strongly graded by the groupoid.
We provide a complete classification of all algebras of generalized dihedral type, which are natural generalizations of algebras which occurred in the study of blocks of group algebras with dihedral defect groups. This gives a description by quivers and relations coming from surface triangulations.
We study Van den Bergh's non-commutative symmetric algebra 𝕊nc(M) (over division rings) via Minamoto's theory of Fano algebras. In particular, we show that 𝕊nc(M) is coherent, and its proj category ℙnc(M) is derived equivalent to the corresponding bimodule species. This generalizes the main theorem of [8], which in turn is a generalization of Beilinson's derived equivalence. As corollaries, we show that ℙnc(M) is hereditary and there is a structure theorem for sheaves on ℙnc(M) analogous to that for ℙ1.
We characterise finite unitary rings $R$ such that all Sylow subgroups of the group of units $R^{\ast }$ are cyclic. To be precise, we show that, up to isomorphism, $R$ is one of the three types of rings in $\{O,E,O\oplus E\}$, where $O\in \{GF(q),\mathbb{Z}_{p^{\unicode[STIX]{x1D6FC}}}\}$ is a ring of odd cardinality and $E$ is a ring of cardinality $2^{n}$ which is one of seven explicitly described types.
The purpose of this paper is to understand lattices of certain subcategories in module categories of representation-finite gentle algebras called tiling algebras, as introduced by Coelho Simões and Parsons. We present combinatorial models for torsion pairs and wide subcategories in the module category of tiling algebras. Our models use the oriented flip graphs and noncrossing tree partitions, previously introduced by the authors, and a description of the extension spaces between indecomposable modules over tiling algebras. In addition, we classify two-term simple-minded collections in bounded derived categories of tiling algebras. As a consequence, we obtain a characterization of c-matrices for any quiver mutation-equivalent to a type A Dynkin quiver.
We prove formulas of different types that allow us to calculate the Gerstenhaber bracket on the Hochschild cohomology of an algebra using some arbitrary projective bimodule resolution for it. Using one of these formulas, we give a new short proof of the derived invariance of the Gerstenhaber algebra structure on Hochschild cohomology. We also give some new formulas for the Connes differential on the Hochschild homology that lead to formulas for the Batalin–Vilkovisky (BV) differential on the Hochschild cohomology in the case of symmetric algebras. Finally, we use one of the obtained formulas to provide a full description of the BV structure and, correspondingly, the Gerstenhaber algebra structure on the Hochschild cohomology of a class of symmetric algebras.
A duality theorem for the stable module category of representations of a finite group scheme is proved. One of its consequences is an analogue of Serre duality, and the existence of Auslander–Reiten triangles for the $\mathfrak{p}$-local and $\mathfrak{p}$-torsion subcategories of the stable category, for each homogeneous prime ideal $\mathfrak{p}$ in the cohomology ring of the group scheme.
We prove two approximations of the open problem of whether the adjoint group of a non-nilpotent nil ring can be finitely generated. We show that the adjoint group of a non-nilpotent Jacobson radical cannot be boundedly generated and, on the other hand, construct a finitely generated, infinite-dimensional nil algebra whose adjoint group is generated by elements of bounded torsion.
Approximation sequences and derived equivalences occur frequently in the research of mutation of tilting objects in representation theory, algebraic geometry and noncommutative geometry. In this paper, we introduce symmetric approximation sequences in additive categories and weakly n-angulated categories which include (higher) Auslander-Reiten sequences (triangles) and mutation sequences in algebra and geometry, and show that such sequences always give rise to derived equivalences between the quotient rings of endomorphism rings of objects in the sequences modulo some ghost and coghost ideals.
We apply the Auslander–Buchweitz approximation theory to show that the Iyama and Yoshino's subfactor triangulated category can be realized as a triangulated quotient. Applications of this realization go in three directions. Firstly, we recover both a result of Iyama and Yang and a result of the third author. Secondly, we extend the classical Buchweitz's triangle equivalence from Iwanaga–Gorenstein rings to Noetherian rings. Finally, we obtain the converse of Buchweitz's triangle equivalence and a result of Beligiannis, and give characterizations for Iwanaga–Gorenstein rings and Gorenstein algebras.