We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The relation between the structure of a ring and the structure of its additive group is studied in the context of some recent results in additive groups of mixed rings. Namely, the notion of the square subgroup of an abelian group, which is a generalization of the concept of nil-group, is considered mainly for mixed non-splitting abelian groups which are the additive groups only of rings whose all subrings are ideals. A non-trivial construction of such a group of finite torsion-free rank no less than two, for which the quotient group modulo the square subgroup is not a nil-group, is given. In particular, a new class of abelian group for which an old problem posed by Stratton and Webb has a negative solution, is indicated. A new, far from obvious, application of rings in which the relation of being an ideal is transitive, is obtained.
Using that integrable derivations of symmetric algebras can be interpreted in terms of Bockstein homomorphisms in Hochschild cohomology, we show that integrable derivations are invariant under the transfer maps in Hochschild cohomology of symmetric algebras induced by stable equivalences of Morita type. With applications in block theory in mind, we allow complete discrete valuation rings of unequal characteristic.
Given an odd prime $p$, we investigate the position of simple modules in the stable Auslander–Reiten quiver of the principal block of a finite group with noncyclic abelian Sylow $p$-subgroups. In particular, we prove a reduction to finite simple groups. In the case that the characteristic is $3$, we prove that simple modules in the principal block all lie at the end of their components.
It is shown that various definitions of $\unicode[STIX]{x1D711}$-Connes amenability and $\unicode[STIX]{x1D711}$-contractibility are equivalent to older and simpler concepts.
We introduce the notion of exact tilting objects, which are partial tilting objects $T$ inducing an equivalence between the abelian category generated by $T$ and the category of modules over the endomorphism algebra of $T$. Given a chain of sufficiently negative rational curves on a rational surface, we construct an exceptional sequence whose universal extension is an exact tilting object. For a chain of $(-2)$-curves, we obtain an equivalence with modules over a well-known algebra.
We obtain a complete structural characterization of Cohn–Leavitt algebras over no-exit objects as graded involutive algebras. Corollaries of this result include graph-theoretic conditions characterizing when a Leavitt path algebra is a directed union of (graded) matricial algebras over the underlying field and over the algebra of Laurent polynomials and when the monoid of isomorphism classes of finitely generated projective modules is atomic and cancelative. We introduce the nonunital generalizations of graded analogs of noetherian and artinian rings, graded locally noetherian and graded locally artinian rings, and characterize graded locally noetherian and graded locally artinian Leavitt path algebras without any restriction on the cardinality of the graph. As a consequence, we relax the assumptions of the Abrams–Aranda–Perera–Siles characterization of locally noetherian and locally artinian Leavitt path algebras.
We use concepts of continuous higher randomness, developed in Bienvenu et al. [‘Continuous higher randomness’, J. Math. Log.17(1) (2017).], to investigate $\unicode[STIX]{x1D6F1}_{1}^{1}$-randomness. We discuss lowness for $\unicode[STIX]{x1D6F1}_{1}^{1}$-randomness, cupping with $\unicode[STIX]{x1D6F1}_{1}^{1}$-random sequences, and an analogue of the Hirschfeldt–Miller characterization of weak 2-randomness. We also consider analogous questions for Cohen forcing, concentrating on the class of $\unicode[STIX]{x1D6F4}_{1}^{1}$-generic reals.
We prove a conjecture of Rouquier relating the decomposition numbers in category ${\mathcal{O}}$ for a cyclotomic rational Cherednik algebra to Uglov’s canonical basis of a higher level Fock space. Independent proofs of this conjecture have also recently been given by Rouquier, Shan, Varagnolo and Vasserot and by Losev, using different methods. Our approach is to develop two diagrammatic models for this category ${\mathcal{O}}$; while inspired by geometry, these are purely diagrammatic algebras, which we believe are of some intrinsic interest. In particular, we can quite explicitly describe the representations of the Hecke algebra that are hit by projectives under the $\mathsf{KZ}$-functor from the Cherednik category ${\mathcal{O}}$ in this case, with an explicit basis. This algebra has a number of beautiful structures including categorifications of many aspects of Fock space. It can be understood quite explicitly using a homogeneous cellular basis which generalizes such a basis given by Hu and Mathas for cyclotomic KLR algebras. Thus, we can transfer results proven in this diagrammatic formalism to category ${\mathcal{O}}$ for a cyclotomic rational Cherednik algebra, including the connection of decomposition numbers to canonical bases mentioned above, and an action of the affine braid group by derived equivalences between different blocks.
Let R be a graded ring. We introduce the concepts of Ding gr-injective and Ding gr-projective R-modules, which are the graded analogues of Ding injective and Ding projective modules. Several characterizations and properties of Ding gr-injective and Ding gr-projective modules are obtained. In addition, we investigate the relationships among Gorenstein gr-flat, Ding gr-injective and Ding gr-projective modules.
In this paper, for each $n\geqslant g\geqslant 0$ we consider the moduli stack $\widetilde{{\mathcal{U}}}_{g,n}^{ns}$ of curves $(C,p_{1},\ldots ,p_{n},v_{1},\ldots ,v_{n})$ of arithmetic genus $g$ with $n$ smooth marked points $p_{i}$ and nonzero tangent vectors $v_{i}$ at them, such that the divisor $p_{1}+\cdots +p_{n}$ is nonspecial (has $h^{1}=0$) and ample. With some mild restrictions on the characteristic we show that it is a scheme, affine over the Grassmannian $G(n-g,n)$. We also construct an isomorphism of $\widetilde{{\mathcal{U}}}_{g,n}^{ns}$ with a certain relative moduli of $A_{\infty }$-structures (up to an equivalence) over a family of graded associative algebras parametrized by $G(n-g,n)$.
We present a calculus that is well-adapted to homogeneous quadratic algebras. We define this calculus on Koszul cohomology – resp. homology – by cup products – resp. cap products. The Koszul homology and cohomology are interpreted in terms of derived categories. If the algebra is not Koszul, then Koszul (co)homology provides different information than Hochschild (co)homology. As an application of our calculus, the Koszul duality for Koszul cohomology algebras is proved for any quadratic algebra, and this duality is extended in some sense to Koszul homology. So, the true nature of the Koszul duality theorem is independent of any assumption on the quadratic algebra. We compute explicitly this calculus on a non-Koszul example.
This paper deals with the Green ring $\mathcal{G}(\mathcal{C})$ of a finite tensor category $\mathcal{C}$ with finitely many isomorphism classes of indecomposable objects over an algebraically closed field. The first part of this paper deals with the question of when the Green ring $\mathcal{G}(\mathcal{C})$, or the Green algebra $\mathcal{G}(\mathcal{C})\otimes_{\mathbb {Z}}$K over a field K, is Jacobson semisimple (namely, has zero Jacobson radical). It turns out that $\mathcal{G}(\mathcal{C})\otimes_{\mathbb {Z}}$K is Jacobson semisimple if and only if the Casimir number of $\mathcal{C}$ is not zero in K. For the Green ring $\mathcal{G}(\mathcal{C})$ itself, $\mathcal{G}(\mathcal{C})$ is Jacobson semisimple if and only if the Casimir number of $\mathcal{C}$ is not zero. The second part of this paper focuses on the case where $\mathcal{C}=\text{Rep}(\mathbb {k}G)$ for a cyclic group G of order p over a field $\mathbb {k}$ of characteristic p. In this case, the Casimir number of $\mathcal{C}$ is computable and is shown to be 2p2. This leads to a complete description of the Jacobson radical of the Green algebra $\mathcal{G}(\mathcal{C})\otimes_{\mathbb {Z}}$K over any field K.
Let $\Bbbk$ be a field of characteristic zero. For any positive integer $n$ and any scalar $a\in \Bbbk$, we construct a family of Artin–Schelter regular algebras $R(n,a)$, which are quantizations of Poisson structures on $\Bbbk [x_{0},\ldots ,x_{n}]$. This generalizes an example given by Pym when $n=3$. For a particular choice of the parameter $a$ we obtain new examples of Calabi–Yau algebras when $n\geqslant 4$. We also study the ring theoretic properties of the algebras $R(n,a)$. We show that the point modules of $R(n,a)$ are parameterized by a bouquet of rational normal curves in $\mathbb{P}^{n}$, and that the prime spectrum of $R(n,a)$ is homeomorphic to the Poisson spectrum of its semiclassical limit. Moreover, we explicitly describe $\operatorname{Spec}R(n,a)$ as a union of commutative strata.
In this paper we study categories ${\mathcal{O}}$ over quantizations of symplectic resolutions admitting Hamiltonian tori actions with finitely many fixed points. In this generality, these categories were introduced by Braden et al. We establish a family of standardly stratified structures (in the sense of the author and Webster) on these categories ${\mathcal{O}}$. We use these structures to study shuffling functors of Braden et al. (called cross-walling functors in this paper). Most importantly, we prove that all cross-walling functors are derived equivalences that define an action of the Deligne groupoid of a suitable real hyperplane arrangement.
In this paper, we mainly provide a categorical view on the braided structures appearing in the Hom-quantum groups. Let $\mathcal{C}$ be a monoidal category on which F is a bimonad, G is a bicomonad, and ϕ is a distributive law, we discuss the necessary and sufficient conditions for $\mathcal{C}^G_F(\varphi)$, the category of mixed bimodules to be monoidal and braided. As applications, we discuss the Hom-type (co)quasitriangular structures, the Hom–Yetter–Drinfeld modules, and the Hom–Long dimodules.
In characteristic two, some criteria are obtained for a symmetric square-central element of a totally decomposable algebra with orthogonal involution, to be contained in an invariant quaternion subalgebra.
Given a partial action $\unicode[STIX]{x1D703}$ of a group on a set with an algebraic structure, we construct a reflector of $\unicode[STIX]{x1D703}$ in the corresponding subcategory of global actions and study the question when this reflector is a globalization. In particular, if $\unicode[STIX]{x1D703}$ is a partial action on an algebra from a variety $\mathsf{V}$, then we show that the problem reduces to the embeddability of a certain generalized amalgam of $\mathsf{V}$-algebras associated with $\unicode[STIX]{x1D703}$. As an application, we describe globalizable partial actions on semigroups, whose domains are ideals.
In this article the $p$-essential dimension of generic symbols over fields of characteristic $p$ is studied. In particular, the $p$-essential dimension of the length $\ell$ generic $p$-symbol of degree $n+1$ is bounded below by $n+\ell$ when the base field is algebraically closed of characteristic $p$. The proof uses new techniques for working with residues in Milne–Kato $p$-cohomology and builds on work of Babic and Chernousov in the Witt group in characteristic 2. Two corollaries on $p$-symbol algebras (i.e, degree 2 symbols) result from this work. The generic $p$-symbol algebra of length $\ell$ is shown to have $p$-essential dimension equal to $\ell +1$ as a $p$-torsion Brauer class. The second is a lower bound of $\ell +1$ on the $p$-essential dimension of the functor $\operatorname{Alg}_{p^{\ell },p}$. Roughly speaking this says that you will need at least $\ell +1$ independent parameters to be able to specify any given algebra of degree $p^{\ell }$ and exponent $p$ over a field of characteristic $p$ and improves on the previously established lower bound of 3.
We study cluster categories arising from marked surfaces (with punctures and non-empty boundaries). By constructing skewed-gentle algebras, we show that there is a bijection between tagged curves and string objects. Applications include interpreting dimensions of $\operatorname{Ext}^{1}$ as intersection numbers of tagged curves and Auslander–Reiten translation as tagged rotation. An important consequence is that the cluster(-tilting) exchange graphs of such cluster categories are connected.