We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper explores the structure groups G(X,r) of finite non-degenerate set-theoretic solutions (X,r) to the Yang–Baxter equation. Namely, we construct a finite quotient $\overline {G}_{(X,r)}$ of G(X,r), generalizing the Coxeter-like groups introduced by Dehornoy for involutive solutions. This yields a finitary setting for testing injectivity: if X injects into G(X,r), then it also injects into $\overline {G}_{(X,r)}$. We shrink every solution to an injective one with the same structure group, and compute the rank of the abelianization of G(X,r). We show that multipermutation solutions are the only involutive solutions with diffuse structure groups; that only free abelian structure groups are bi-orderable; and that for the structure group of a self-distributive solution, the following conditions are equivalent: bi-orderable, left-orderable, abelian, free abelian and torsion free.
In this paper we show that to a unital associative algebra object (resp. co-unital co-associative co-algebra object) of any abelian monoidal category ($\mathscr{C},\otimes$) endowed with a symmetric 2-trace, i.e., an $F\in \text{Fun}(\mathscr{C},\text{Vec})$ satisfying some natural trace-like conditions, one can attach a cyclic (resp. cocyclic) module, and therefore speak of the (co)cyclic homology of the (co)algebra “with coefficients in $F$”. Furthermore, we observe that if $\mathscr{M}$ is a $\mathscr{C}$-bimodule category and $(F,M)$ is a stable central pair, i.e., $F\in \text{Fun}(\mathscr{M},\text{Vec})$ and $M\in \mathscr{M}$ satisfy certain conditions, then $\mathscr{C}$ acquires a symmetric 2-trace. The dual notions of symmetric 2-contratraces and stable central contrapairs are derived as well. As an application we can recover all Hopf cyclic type (co)homology theories.
We show that silting modules are closely related with localizations of rings. More precisely, every partial silting module gives rise to a localization at a set of maps between countably generated projective modules and, conversely, every universal localization, in the sense of Cohn and Schofield, arises in this way. To establish these results, we further explore the finite-type classification of tilting classes and we use the morphism category to translate silting modules into tilting objects. In particular, we prove that silting modules are of finite type.
Let F be a field of characteristic two and G a finite abelian 2-group with an involutory automorphism η. If G = H × D with non-trivial subgroups H and D of G such that η inverts the elements of H (H without a direct factor of order 2) and fixes D element-wise, then the linear extension of η to the group algebra FG is called a nice involution. This determines the groups of unitary and symmetric normalized units of FG. We calculate the orders and the invariants of these subgroups.
Let $k$ be a commutative ring, let ${\mathcal{C}}$ be a small, $k$-linear, Hom-finite, locally bounded category, and let ${\mathcal{B}}$ be a $k$-linear abelian category. We construct a Frobenius exact subcategory ${\mathcal{G}}{\mathcal{P}}({\mathcal{G}}{\mathcal{P}}_{P}({\mathcal{B}}^{{\mathcal{C}}}))$ of the functor category ${\mathcal{B}}^{{\mathcal{C}}}$, and we show that it is a subcategory of the Gorenstein projective objects ${\mathcal{G}}{\mathcal{P}}({\mathcal{B}}^{{\mathcal{C}}})$ in ${\mathcal{B}}^{{\mathcal{C}}}$. Furthermore, we obtain criteria for when ${\mathcal{G}}{\mathcal{P}}({\mathcal{G}}{\mathcal{P}}_{P}({\mathcal{B}}^{{\mathcal{C}}}))={\mathcal{G}}{\mathcal{P}}({\mathcal{B}}^{{\mathcal{C}}})$. We show in examples that this can be used to compute ${\mathcal{G}}{\mathcal{P}}({\mathcal{B}}^{{\mathcal{C}}})$ explicitly.
For a multiplier Hopf algebra pairing 〈A,B〉, we construct a class of group-cograded multiplier Hopf algebras D(A,B), generalizing the classical construction of finite dimensional Hopf algebras introduced by Panaite and Staic Mihai [Isr. J. Math. 158 (2007), 349–365]. Furthermore, if the multiplier Hopf algebra pairing admits a canonical multiplier in M(B⊗A) we show the existence of quasitriangular structure on D(A,B). As an application, some special cases and examples are provided.
We consider the unital Banach algebra $\ell ^{1}(\mathbb{Z}_{+})$ and prove directly, without using cyclic cohomology, that the simplicial cohomology groups ${\mathcal{H}}^{n}(\ell ^{1}(\mathbb{Z}_{+}),\ell ^{1}(\mathbb{Z}_{+})^{\ast })$ vanish for all $n\geqslant 2$. This proceeds via the introduction of an explicit bounded linear operator which produces a contracting homotopy for $n\geqslant 2$. This construction is generalised to unital Banach algebras $\ell ^{1}({\mathcal{S}})$, where ${\mathcal{S}}={\mathcal{G}}\cap \mathbb{R}_{+}$ and ${\mathcal{G}}$ is a subgroup of $\mathbb{R}_{+}$.
A theorem of Burgess and Stephenson asserts that in an exchange ring with central idempotents, every maximal left ideal is also a right ideal. The proof uses sheaf-theoretic techniques. In this paper, we give a short elementary proof of this important theorem.
The main result of this paper establishes a bijection between the set of equivalence classes of simple transitive 2-representations with a fixed apex ${\mathcal{J}}$ of a fiat 2-category $\mathscr{C}$ and the set of equivalence classes of faithful simple transitive 2-representations of the fiat 2-subquotient of $\mathscr{C}$ associated with a diagonal ${\mathcal{H}}$-cell in ${\mathcal{J}}$. As an application, we classify simple transitive 2-representations of various categories of Soergel bimodules, in particular, completing the classification in types $B_{3}$ and $B_{4}$.
Braces were introduced by Rump in 2007 as a useful tool in the study of the set-theoretic solutions of the Yang–Baxter equation. In fact, several aspects of the theory of finite left braces and their applications in the context of the Yang–Baxter equation have been extensively investigated recently. The main aim of this paper is to introduce and study two finite brace theoretical properties associated with nilpotency, and to analyse their impact on the finite solutions of the Yang–Baxter equation.
We study the structure of the stable category $\text{}\underline{\mathsf{CM}}^{\mathbb{Z}}(S/(f))$ of graded maximal Cohen–Macaulay module over $S/(f)$ where $S$ is a graded ($\pm 1$)-skew polynomial algebra in $n$ variables of degree 1, and $f=x_{1}^{2}+\cdots +x_{n}^{2}$. If $S$ is commutative, then the structure of $\text{}\underline{\mathsf{CM}}^{\mathbb{Z}}(S/(f))$ is well known by Knörrer’s periodicity theorem. In this paper, we prove that if $n\leqslant 5$, then the structure of $\text{}\underline{\mathsf{CM}}^{\mathbb{Z}}(S/(f))$ is determined by the number of irreducible components of the point scheme of $S$ which are isomorphic to $\mathbb{P}^{1}$.
In this paper we define almost gentle algebras, which are monomial special multiserial algebras generalizing gentle algebras. We show that the trivial extension of an almost gentle algebra by its minimal injective co-generator is a symmetric special multiserial algebra and hence a Brauer configuration algebra. Conversely, we show that any almost gentle algebra is an admissible cut of a unique Brauer configuration algebra and, as a consequence, we obtain that every Brauer configuration algebra with multiplicity function identically one is the trivial extension of an almost gentle algebra. We show that a hypergraph is associated with every almost gentle algebra A, and that this hypergraph induces the Brauer configuration of the trivial extension of A. Among other things, this gives a combinatorial criterion to decide when two almost gentle algebras have isomorphic trivial extensions.
We examine situations, where representations of a finite-dimensional F-algebra A defined over a separable extension field K/F, have a unique minimal field of definition. Here the base field F is assumed to be a field of dimension ≼1. In particular, F could be a finite field or k(t) or k((t)), where k is algebraically closed. We show that a unique minimal field of definition exists if (a) K/F is an algebraic extension or (b) A is of finite representation type. Moreover, in these situations the minimal field of definition is a finite extension of F. This is not the case if A is of infinite representation type or F fails to be of dimension ≼1. As a consequence, we compute the essential dimension of the functor of representations of a finite group, generalizing a theorem of Karpenko, Pevtsova and the second author.
If H is a monoid and a = u1 ··· uk ∈ H with atoms (irreducible elements) u1, … , uk, then k is a length of a, the set of lengths of a is denoted by Ⅼ(a), and ℒ(H) = {Ⅼ(a) | a ∈ H} is the system of sets of lengths of H. Let R be a hereditary Noetherian prime (HNP) ring. Then every element of the monoid of non-zero-divisors R• can be written as a product of atoms. We show that if R is bounded and every stably free right R-ideal is free, then there exists a transfer homomorphism from R• to the monoid B of zero-sum sequences over a subset Gmax(R) of the ideal class group G(R). This implies that the systems of sets of lengths, together with further arithmetical invariants, of the monoids R• and B coincide. It is well known that commutative Dedekind domains allow transfer homomorphisms to monoids of zero-sum sequences, and the arithmetic of the latter has been the object of much research. Our approach is based on the structure theory of finitely generated projective modules over HNP rings, as established in the recent monograph by Levy and Robson. We complement our results by giving an example of a non-bounded HNP ring in which every stably free right R-ideal is free but which does not allow a transfer homomorphism to a monoid of zero-sum sequences over any subset of its ideal class group.
We solve two problems in representation theory for the periplectic Lie superalgebra $\mathfrak{p}\mathfrak{e}(n)$, namely, the description of the primitive spectrum in terms of functorial realisations of the braid group and the decomposition of category ${\mathcal{O}}$ into indecomposable blocks.
To solve the first problem, we establish a new type of equivalence between category ${\mathcal{O}}$ for all (not just simple or basic) classical Lie superalgebras and a category of Harish-Chandra bimodules. The latter bimodules have a left action of the Lie superalgebra but a right action of the underlying Lie algebra. To solve the second problem, we establish a BGG reciprocity result for the periplectic Lie superalgebra.
We introduce what is meant by an AC-Gorenstein ring. It is a generalized notion of Gorenstein ring that is compatible with the Gorenstein AC-injective and Gorenstein AC-projective modules of Bravo–Gillespie–Hovey. It is also compatible with the notion of $n$-coherent rings introduced by Bravo–Perez. So a $0$-coherent AC-Gorenstein ring is precisely a usual Gorenstein ring in the sense of Iwanaga, while a $1$-coherent AC-Gorenstein ring is precisely a Ding–Chen ring. We show that any AC-Gorenstein ring admits a stable module category that is compactly generated and is the homotopy category of two Quillen equivalent abelian model category structures. One is projective with cofibrant objects that are Gorenstein AC-projective modules while the other is an injective model structure with fibrant objects that are Gorenstein AC-injectives.
This paper is dedicated to a problem raised by Jacquet Tits in 1956: the Weyl group of a Chevalley group should find an interpretation as a group over what is nowadays called $\mathbb{F}_{1}$, the field with one element. Based on Part I of The geometry of blueprints, we introduce the class of Tits morphisms between blue schemes. The resulting Tits category$\text{Sch}_{{\mathcal{T}}}$ comes together with a base extension to (semiring) schemes and the so-called Weyl extension to sets. We prove for ${\mathcal{G}}$ in a wide class of Chevalley groups—which includes the special and general linear groups, symplectic and special orthogonal groups, and all types of adjoint groups—that a linear representation of ${\mathcal{G}}$ defines a model $G$ in $\text{Sch}_{{\mathcal{T}}}$ whose Weyl extension is the Weyl group $W$ of ${\mathcal{G}}$. We call such models Tits–Weyl models. The potential of Tits–Weyl models lies in (a) their intrinsic definition that is given by a linear representation; (b) the (yet to be formulated) unified approach towards thick and thin geometries; and (c) the extension of a Chevalley group to a functor on blueprints, which makes it, in particular, possible to consider Chevalley groups over semirings. This opens applications to idempotent analysis and tropical geometry.
In this paper we study the behavior of the first Zassenhaus conjecture (ZC1) under direct products, as well as the General Bovdi Problem (Gen-BP), which turns out to be a slightly weaker variant of (ZC1). Among other things, we prove that (Gen-BP) holds for Sylow tower groups, and so in particular for the class of supersolvable groups.
(ZC1) is established for a direct product of Sylow-by-abelian groups provided the normal Sylow subgroups form together a Hall subgroup. We also show (ZC1) for certain direct products with one of the factors a Frobenius group.
We extend the classical HeLP method to group rings with coefficients from any ring of algebraic integers. This is used to study (ZC1) for the direct product $G\times A$, where $A$ is a finite abelian group and $G$ has order at most 95. For most of these groups we show that (ZC1) is valid and for all of them that (Gen-BP) holds. Moreover, we also prove that (Gen-BP) holds for the direct product of a Frobenius group with any finite abelian group.
We introduce the notion of a perfect path for a monomial algebra. We classify indecomposable non-projective Gorenstein-projective modules over the given monomial algebra via perfect paths. We apply the classification to a quadratic monomial algebra and describe explicitly the stable category of its Gorenstein-projective modules.
We introduce properties of metric spaces and, specifically, finitely
generated groups with word metrics, which we call coarse
coherence and coarse regular coherence. They are
geometric counterparts of the classical algebraic notion of coherence and
the regular coherence property of groups defined and studied by Waldhausen.
The new properties can be defined in the general context of coarse metric
geometry and are coarse invariants. In particular, they are quasi-isometry
invariants of spaces and groups. The new framework allows us to prove
structural results by developing permanence properties, including the
particularly important fibering permanence property, for coarse regular
coherence.