We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let ${\mathcal{A}}$ be a unital torsion-free algebra over a unital commutative ring ${\mathcal{R}}$. To characterise Lie $n$-higher derivations on ${\mathcal{A}}$, we give an identity which enables us to transfer problems related to Lie $n$-higher derivations into the same problems concerning Lie $n$-derivations. We prove that: (1) if every Lie $n$-derivation on ${\mathcal{A}}$ is standard, then so is every Lie $n$-higher derivation on ${\mathcal{A}}$; (2) if every linear mapping Lie $n$-derivable at several points is a Lie $n$-derivation, then so is every sequence $\{d_{m}\}$ of linear mappings Lie $n$-higher derivable at these points; (3) if every linear mapping Lie $n$-derivable at several points is a sum of a derivation and a linear mapping vanishing on all $(n-1)$th commutators of these points, then every sequence $\{d_{m}\}$ of linear mappings Lie $n$-higher derivable at these points is a sum of a higher derivation and a sequence of linear mappings vanishing on all $(n-1)$th commutators of these points. We also give several applications of these results.
Let $\unicode[STIX]{x1D6EC}$ be a connected hereditary artin algebra. We show that the set of functorially finite torsion classes of $\unicode[STIX]{x1D6EC}$-modules is a lattice if and only if $\unicode[STIX]{x1D6EC}$ is either representation-finite (thus a Dynkin algebra) or $\unicode[STIX]{x1D6EC}$ has only two simple modules. For the case of $\unicode[STIX]{x1D6EC}$ being the path algebra of a quiver, this result has recently been established by Iyama–Reiten–Thomas–Todorov and our proof follows closely some of their considerations.
Let $(W,S)$ be a finite Coxeter group. Kazhdan and Lusztig introduced the concept of $W$-graphs, and Gyoja proved that every irreducible representation of the Iwahori–Hecke algebra $H(W,S)$ can be realized as a $W$-graph. Gyoja defined an auxiliary algebra for this purpose which—to the best of the author’s knowledge—was never explicitly mentioned again in the literature after Gyoja’s proof (although the underlying ideas were reused). The purpose of this paper is to resurrect this $W$-graph algebra, and to study its structure and its modules. A new explicit description of it as a quotient of a certain path algebra is given. A general conjecture is proposed which would imply strong restrictions on the structure of $W$-graphs. This conjecture is then proven for Coxeter groups of type $I_{2}(m)$, $B_{3}$ and $A_{1}$–$A_{4}$.
We show that every subset of vertices of a directed graph $E$ gives a Morita equivalence between a subalgebra and an ideal of the associated Leavitt path algebra. We use this observation to prove an algebraic version of a theorem of Crisp and Gow: certain subgraphs of $E$ can be contracted to a new graph $G$ such that the Leavitt path algebras of $E$ and $G$ are Morita equivalent. We provide examples to illustrate how desingularising a graph, and in- or out-delaying of a graph, all fit into this setting.
We introduce a new method to study rational conjugacy of torsion units in integral group rings using integral and modular representation theory. Employing this new method, we verify the first Zassenhaus conjecture for the group PSL(2, 19). We also prove the Zassenhaus conjecture for PSL(2, 23). In a second application we show that there are no normalized units of order 6 in the integral group rings of M10 and PGL(2, 9). This completes the proof of a theorem of Kimmerle and Konovalov that shows that the prime graph question has an affirmative answer for all groups having an order divisible by at most three different primes.
The study of pure-injectivity is accessed from an alternative point of view. A module M is called pure-subinjective relative to a module N if for every pure extension K of N, every homomorphism N → M can be extended to a homomorphism K → M. The pure-subinjectivity domain of the module M is defined to be the class of modules N such that M is N-pure-subinjective. Basic properties of the notion of pure-subinjectivity are investigated. We obtain characterizations for various types of rings and modules, including absolutely pure (or, FP-injective) modules, von Neumann regular rings and (pure-) semisimple rings in terms of pure-subinjectivity domains. We also consider cotorsion modules, endomorphism rings of certain modules, and, for a module N, (pure) quotients of N-pure-subinjective modules.
We study the interplay between the minimal representations of the orthogonal Lie algebra $\mathfrak{g}=\mathfrak{so}(n+2,\mathbb{C})$ and the algebra of symmetries$\mathscr{S}(\Box ^{r})$ of powers of the Laplacian $\Box$ on $\mathbb{C}^{n}$. The connection is made through the construction of a highest-weight representation of $\mathfrak{g}$ via the ring of differential operators ${\mathcal{D}}(X)$ on the singular scheme $X=(\mathtt{F}^{r}=0)\subset \mathbb{C}^{n}$, for $\mathtt{F}=\sum _{j=1}^{n}X_{i}^{2}\in \mathbb{C}[X_{1},\ldots ,X_{n}]$. In particular, we prove that $U(\mathfrak{g})/K_{r}\cong \mathscr{S}(\Box ^{r})\cong {\mathcal{D}}(X)$ for a certain primitive ideal $K_{r}$. Interestingly, if (and only if) $n$ is even with $r\geqslant n/2$, then both $\mathscr{S}(\Box ^{r})$ and its natural module ${\mathcal{A}}=\mathbb{C}[\unicode[STIX]{x2202}/\unicode[STIX]{x2202}X_{n},\ldots ,\unicode[STIX]{x2202}/\unicode[STIX]{x2202}X_{n}]/(\Box ^{r})$ have a finite-dimensional factor. The same holds for the ${\mathcal{D}}(X)$-module ${\mathcal{O}}(X)$. We also study higher-dimensional analogues $M_{r}=\{x\in A:\Box ^{r}(x)=0\}$ of the module of harmonic elements in $A=\mathbb{C}[X_{1},\ldots ,X_{n}]$ and of the space of ‘harmonic densities’. In both cases we obtain a minimal $\mathfrak{g}$-representation that is closely related to the $\mathfrak{g}$-modules ${\mathcal{O}}(X)$ and ${\mathcal{A}}$. Essentially all these results have real analogues, with the Laplacian replaced by the d’Alembertian $\Box _{p}$ on the pseudo-Euclidean space $\mathbb{R}^{p,q}$ and with $\mathfrak{g}$ replaced by the real Lie algebra $\mathfrak{so}(p+1,q+1)$.
Khovanov–Lauda–Rouquier (KLR) algebras of finite Lie type come with families of standard modules, which under the Khovanov–Lauda–Rouquier categorification correspond to PBW bases of the positive part of the corresponding quantized enveloping algebra. We show that there are no non-zero homomorphisms between distinct standard modules and that all non-zero endomorphisms of a standard module are injective. We present applications to the extensions between standard modules and modular representation theory of KLR algebras.
Asymptotic triangulations can be viewed as limits of triangulations under the action of the mapping class group. In the case of the annulus, such triangulations have been introduced in K. Baur and G. Dupont (Compactifying exchange graphs: Annuli and tubes, Ann. Comb.3(18) (2014), 797–839). We construct an alternative method of obtaining these asymptotic triangulations using Coxeter transformations. This provides us with an algebraic and combinatorial framework for studying these limits via the associated quivers.
In 2014, the first two authors proved an extension to modules of a theorem of Camillo and Yu that an exchange ring has stable range 1 if and only if every regular element is unit-regular. Here, we give a Morita context version of a stronger theorem. The definition of regular elements in a module goes back to Zelmanowitz in 1972, but the notion of a unit-regular element in a module is new. In this paper, we study unit-regular elements and give several characterizations of them in terms of “stable” elements and “lifting” elements. Along the way, we give natural extensions to the module case of many results about unit-regular rings. The paper concludes with a discussion of when the endomorphism ring of a unit-regular module is a unit-regular ring.
We develop a theory of commensurability of groups, of rings, and of modules. It allows us, in certain cases, to compare sizes of automorphism groups of modules, even when those are infinite. This work is motivated by the Cohen–Lenstra heuristics on class groups.
A ring R has right property (A) whenever a finitely generated two-sided ideal of R consisting entirely of left zero-divisors has a non-zero right annihilator. As the main result of this paper we give answers to two questions related to property (A), raised by Hong et al. One of the questions has a positive answer and we obtain it as a simple conclusion of the fact that if R is a right duo ring and M is a u.p.-monoid (unique product monoid), then R is right M-McCoy and the monoid ring R[M] has right property (A). The second question has a negative answer and we demonstrate this by constructing a suitable example.
We study the extent to which the weak Euclidean and stably free cancellation properties hold for rings of Laurent polynomials with coefficients in an Artinian ring A.
Let $p,q$ be primes such that $q|p-1$ and set $\unicode[STIX]{x1D6F7}=C_{p}\rtimes C_{q}$, $G=\unicode[STIX]{x1D6F7}\times C_{\infty }^{n}$ and $\unicode[STIX]{x1D6EC}=\mathbf{Z}[G]$, the integral group ring of $G$. By means of a fibre square decomposition, we show that stably free modules over $\unicode[STIX]{x1D6EC}$ are necessarily free.
We consider the notion of a free resolution. In general, a free resolution can be of any length depending on the group ring under investigation. The metacyclic groups $G(pq)$ however admit periodic resolutions. In the particular case of $G(21)$ it is possible to achieve a fully diagonalized resolution. In order to achieve a diagonal resolution, we obtain a complete list of indecomposable modules over $\unicode[STIX]{x1D6EC}$. Such a list aids the decomposition of the augmentation ideal (the first syzygy) into a direct sum of indecomposable modules. Therefore, we are able to achieve a diagonalized map here. From this point it is possible to decompose all of the remaining syzygies in terms of indecomposable modules, leaving a diagonal resolution.
We prove that an integral Jacobson radical ring is always nil, which extends a well-known result from algebras over fields to rings. As a consequence we show that if every element x of a ring R is a zero of some polynomial px with integer coefficients, such that px(1) = 1, then R is a nil ring. With these results we are able to give new characterizations of the upper nilradical of a ring and a new class of rings that satisfy the Köthe conjecture: namely, the integral rings.
Let $A$ be a truncated polynomial ring over a complete discrete valuation ring ${\mathcal{O}}$, and we consider the additive category consisting of $A$-lattices $M$ with the property that $M\otimes {\mathcal{K}}$ is projective as an $A\otimes {\mathcal{K}}$-module, where ${\mathcal{K}}$ is the fraction field of ${\mathcal{O}}$. Then, we may define the stable Auslander–Reiten quiver of the category. We determine the shape of the components of the stable Auslander–Reiten quiver that contain Heller lattices.
A special atom (respectively, supernilpotent atom) is a minimal element of the lattice $\mathbb{S}$ of all special radicals (respectively, a minimal element of the lattice $\mathbb{K}$ of all supernilpotent radicals). A semiprime ring $R$ is called prime essential if every nonzero prime ideal of $R$ has a nonzero intersection with each nonzero two-sided ideal of $R$. We construct a prime essential ring $R$ such that the smallest supernilpotent radical containing $R$ is not a supernilpotent atom but where the smallest special radical containing $R$ is a special atom. This answers a question put by Puczylowski and Roszkowska.
We define canonical and $n$-canonical modules of a module-finite algebra over a Noether commutative ring and study their basic properties. Using $n$-canonical modules, we generalize a theorem on $(n,C)$-syzygy by Araya and Iima which generalize a well-known theorem on syzygies by Evans and Griffith. Among others, we prove a noncommutative version of Aoyama’s theorem which states that a canonical module descends with respect to a flat local homomorphism.
Let $A_{2}$ be a free associative algebra or polynomial algebra of rank two over a field of characteristic zero. The main results of this paper are the classification of noninjective endomorphisms of $A_{2}$ and an algorithm to determine whether a given noninjective endomorphism of $A_{2}$ has a nontrivial fixed element for a polynomial algebra. The algorithm for a free associative algebra of rank two is valid whenever an element is given and the subalgebra generated by this element contains the image of the given noninjective endomorphism.