We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce a new method for expanding an abelian category and study it using recollements. In particular, we give a criterion for the existence of cotilting objects. We show, using techniques from noncommutative algebraic geometry, that our construction encompasses the category of coherent sheaves on Geigle–Lenzing weighted projective lines. We apply our construction to some concrete examples and obtain new weighted projective varieties, and analyze the endomorphism algebras of their tilting bundles.
With applications in mind to the representations and cohomology of block algebras, we examine elements of the graded center of a triangulated category when the category has a Serre functor. These are natural transformations from the identity functor to powers of the shift functor that commute with the shift functor. We show that such natural transformations that have support in a single shift orbit of indecomposable objects are necessarily of a kind previously constructed by Linckelmann. Under further conditions, when the support is contained in only finitely many shift orbits, sums of transformations of this special kind account for all possibilities. Allowing infinitely many shift orbits in the support, we construct elements of the graded center of the stable module category of a tame group algebra of a kind that cannot occur with wild block algebras. We use functorial methods extensively in the proof, developing some of this theory in the context of triangulated categories.
We prove the boundedness of a smooth bilinear Rubio de Francia operator associated with an arbitrary collection of squares (with sides parallel to the axes) in the frequency plane
provided $r>2$. More exactly, we show that the above operator maps $L^{p}\times L^{q}\rightarrow L^{s}$ whenever $p,q,s^{\prime }$ are in the ‘local $L^{r^{\prime }}$’ range, that is,
Assume that $A$ is a finite-dimensional algebra over some field, and assume that $A$ is weakly symmetric and indecomposable, with radical cube zero and radical square nonzero. We show that such an algebra of wild representation type does not have a nonprojective module $M$ whose ext-algebra is finite dimensional. This gives a complete classification of weakly symmetric indecomposable algebras which have a nonprojective module whose ext-algebra is finite dimensional. This shows in particular that existence of ext-finite nonprojective modules is not equivalent with the failure of the finite generation condition (Fg), which ensures that modules have support varieties.
If $T$ and $T^{\prime }$ are two cluster-tilting objects of an acyclic cluster category related by a mutation, their endomorphism algebras are nearly Morita equivalent (Buan et al., Cluster-tilted algebras, Trans. Amer. Math. Soc. 359(1) (2007), 323–332 (electronic)); that is, their module categories are equivalent “up to a simple module”. This result has been generalized by Yang, using a result of Plamondon, to any simple mutation of maximal rigid objects in a 2-Calabi–Yau triangulated category. In this paper, we investigate the more general case of any mutation of a (non-necessarily maximal) rigid object in a triangulated category with a Serre functor. In that setup, the endomorphism algebras might not be nearly Morita equivalent, and we obtain a weaker property that we call pseudo-Morita equivalence. Inspired by Buan and Marsh (From triangulated categories to module categories via localization II: calculus of fractions, J. Lond. Math. Soc. (2) 86(1) (2012), 152–170; From triangulated categories to module categories via localisation, Trans. Amer. Math. Soc. 365(6) (2013), 2845–2861), we also describe our result in terms of localizations.
We study certain integer valued length functions on triangulated categories, and establish a correspondence between such functions and cohomological functors taking values in the category of finite length modules over some ring. The irreducible cohomological functions form a topological space. We discuss its basic properties, and include explicit calculations for the category of perfect complexes over some specific rings.
In this paper we introduce and study Miyashita action in the context of monoidal categories aiming by this to provide a common framework of previous studies in the literature. We make a special emphasis of this action on Azumaya monoids. To this end, we develop the theory of invertible bimodules over different monoids (a sort of Morita contexts) in general monoidal categories as well as their corresponding Miyashita action. Roughly speaking, a Miyashita action is a homomorphism of groups from the group of all isomorphic classes of invertible subobjects of a given monoid to its group of automorphisms. In the symmetric case, we show that for certain Azumaya monoids, which are abundant in practice, the corresponding Miyashita action is always an isomorphism of groups. This generalizes Miyashita’s classical result and sheds light on other applications of geometric nature which cannot be treated using the classical theory. In order to illustrate our methods, we give a concrete application to the category of comodules over commutative (flat) Hopf algebroids. This obviously includes the special cases of split Hopf algebroids (action groupoids), which for instance cover the situation of the action of an affine algebraic group on an affine algebraic variety.
In the context of varieties of representations of arbitrary quivers, possibly carrying loops, we define a generalization of Lusztig Lagrangian subvarieties. From the combinatorial study of their irreducible components arises a structure richer than the usual Kashiwara crystals. Along with the geometric study of Nakajima quiver varieties, in the same context, this yields a notion of generalized crystals, coming with a tensor product. As an application, we define the semicanonical basis of the Hopf algebra generalizing quantum groups, which was already equipped with a canonical basis. The irreducible components of the Nakajima varieties provide the family of highest weight crystals associated to dominant weights, as in the classical case.
In this work we prove the so-called dimension property for the cohomological field theory associated with a homogeneous polynomial $W$ with an isolated singularity, in the algebraic framework of [A. Polishchuk and A. Vaintrob, Matrix factorizations and cohomological field theories, J. Reine Angew. Math. 714 (2016), 1–122]. This amounts to showing that some cohomology classes on the Deligne–Mumford moduli spaces of stable curves, constructed using Fourier–Mukai-type functors associated with matrix factorizations, live in prescribed dimension. The proof is based on a homogeneity result established in [A. Polishchuk and A. Vaintrob, Algebraic construction of Witten’s top Chern class, in Advances in algebraic geometry motivated by physics (Lowell, MA, 2000) (American Mathematical Society, Providence, RI, 2001), 229–249] for certain characteristic classes of Koszul matrix factorizations of $0$. To reduce to this result, we use the theory of Fourier–Mukai-type functors involving matrix factorizations and the natural rational lattices in the relevant Hochschild homology spaces, as well as a version of Hodge–Riemann bilinear relations for Hochschild homology of matrix factorizations. Our approach also gives a proof of the dimension property for the cohomological field theories associated with some quasihomogeneous polynomials with an isolated singularity.
We describe how Mirković–Vilonen (MV) polytopes arise naturally from the categorification of Lie algebras using Khovanov–Lauda–Rouquier (KLR) algebras. This gives an explicit description of the unique crystal isomorphism between simple representations of KLR algebras and MV polytopes. MV polytopes, as defined from the geometry of the affine Grassmannian, only make sense in finite type. Our construction on the other hand gives a map from the infinity crystal to polytopes for all symmetrizable Kac–Moody algebras. However, to make the map injective and have well-defined crystal operators on the image, we must in general decorate the polytopes with some extra information. We suggest that the resulting ‘KLR polytopes’ are the general-type analogues of MV polytopes. We give a combinatorial description of the resulting decorated polytopes in all affine cases, and show that this recovers the affine MV polytopes recently defined by Baumann, Kamnitzer, and the first author in symmetric affine types. We also briefly discuss the situation beyond affine type.
Let H be a Hopf algebra with a bijective antipode, A an H-simple H-module algebra finitely generated as an algebra over the ground field and module-finite over its centre. The main result states that A has finite injective dimension and is, moreover, Artin–Schelter Gorenstein under the additional assumption that each H-orbit in the space of maximal ideals of A is dense with respect to the Zariski topology. Further conclusions are derived in the cases when the maximal spectrum of A is a single H-orbit or contains an open dense H-orbit.
In this paper, we study the poset of basic tilting kQ-modules when Q is a Dynkin quiver, and the poset of basic support τ-tilting kQ-modules when Q is a connected acyclic quiver respectively. It is shown that the first poset is a distributive lattice if and only if Q is of types $\mathbb{A}_{1}$, $\mathbb{A}_{2}$ or $\mathbb{A}_{3}$ with a non-linear orientation and the second poset is a distributive lattice if and only if Q is of type $\mathbb{A}_{1}$.
In this note, we have obtained a Whitehead-like tower of a module by considering a suitable set of morphisms and shown that the different stages of the tower are the Adams cocompletions of the module with respect to the suitably chosen set of morphisms.
In this paper, we consider several homological dimensions of crossed products AασG, where A is a left Noetherian ring and G is a finite group. We revisit the induction and restriction functors in derived categories, generalizing a few classical results for separable extensions. The global dimension and finitistic dimension of AσαG are classified: global dimension of AσαG is either infinity or equal to that of A, and finitistic dimension of AσαG coincides with that of A. A criterion for skew group rings to have finite global dimensions is deduced. Under the hypothesis that A is a semiprimary algebra containing a complete set of primitive orthogonal idempotents closed under the action of a Sylow p-subgroup S ≤ G, we show that A and AασG share the same homological dimensions under extra assumptions, extending the main results in (Li, Representations of modular skew group algebras, Trans. Amer. Math. Soc.367(9) (2015), 6293–6314, Li, Finitistic dimensions and picewise hereditary property of skew group algebras, to Glasgow Math. J.57(3) (2015), 509–517).
In a previous paper, we studied the homogenized enveloping algebra of the Lie algebra sℓ(2,ℂ) and the homogenized Verma modules. The aim of this paper is to study the homogenization $\mathcal{O}$B of the Bernstein–Gelfand–Gelfand category $\mathcal{O}$ of sℓ(2,ℂ), and to apply the ideas developed jointly with J. Mondragón in our work on Groebner basis algebras, to give the relations between the categories $\mathcal{O}$B and $\mathcal{O}$ as well as, between the derived categories $\mathcal{D}$b($\mathcal{O}$B) and $\mathcal{D}$b($\mathcal{O}$).
In this paper we demonstrate that non-commutative localizations of arbitrary additive categories (generalizing those defined by Cohn in the setting of rings) are closely (and naturally) related to weight structures. Localizing an arbitrary triangulated category $\text{}\underline{C}$ by a set $S$ of morphisms in the heart $\text{}\underline{Hw}$ of a weight structure $w$ on it one obtains a triangulated category endowed with a weight structure $w^{\prime }$. The heart of $w^{\prime }$ is a certain version of the Karoubi envelope of the non-commutative localization $\text{}\underline{Hw}[S^{-1}]_{\mathit{add}}$ (of $\text{}\underline{Hw}$ by $S$). The functor $\text{}\underline{Hw}\rightarrow \text{}\underline{Hw}[S^{-1}]_{\mathit{add}}$ is the natural categorical version of Cohn’s localization of a ring, i.e., it is universal among additive functors that make all elements of $S$ invertible. For any additive category $\text{}\underline{A}$, taking $\text{}\underline{C}=K^{b}(\text{}\underline{A})$ we obtain a very efficient tool for computing $\text{}\underline{A}[S^{-1}]_{\mathit{add}}$; using it, we generalize the calculations of Gerasimov and Malcolmson (made for rings only). We also prove that $\text{}\underline{A}[S^{-1}]_{\mathit{add}}$ coincides with the ‘abstract’ localization $\text{}\underline{A}[S^{-1}]$ (as constructed by Gabriel and Zisman) if $S$ contains all identity morphisms of $\text{}\underline{A}$ and is closed with respect to direct sums. We apply our results to certain categories of birational motives $DM_{gm}^{o}(U)$ (generalizing those defined by Kahn and Sujatha). We define $DM_{gm}^{o}(U)$ for an arbitrary $U$ as a certain localization of $K^{b}(Cor(U))$ and obtain a weight structure for it. When $U$ is the spectrum of a perfect field, the weight structure obtained this way is compatible with the corresponding Chow and Gersten weight structures defined by the first author in previous papers. For a general $U$ the result is completely new. The existence of the corresponding adjacent$t$-structure is also a new result over a general base scheme; its heart is a certain category of birational sheaves with transfers over $U$.
We show that every finitely generated algebra that is a finitely generated module over a finitely generated commutative subalgebra is an automaton algebra in the sense of Ufnarovskii.
An interchange ring,$(R,+,\bullet )$, is an abelian group with a second binary operation defined so that the interchange law$(w+x)\bullet (y+z)=(w\bullet y)+(x\bullet z)$ holds. An interchange near ring is the same structure based on a group which may not be abelian. It is shown that each interchange (near) ring based on a group $G$ is formed from a pair of endomorphisms of $G$ whose images commute, and that all interchange (near) rings based on $G$ can be characterized in this manner. To obtain an associative interchange ring, the endomorphisms must be commuting idempotents in the endomorphism semigroup of $G$. For $G$ a finite abelian group, we develop a group-theoretic analogue of the simultaneous diagonalization of idempotent linear operators and show that pairs of endomorphisms which yield associative interchange rings can be diagonalized and then put into a canonical form. A best possible upper bound of $4^{r}$ can be given for the number of distinct isomorphism classes of associative interchange rings based on a finite abelian group $A$ which is a direct sum of $r$ cyclic groups of prime power order. If $A$ is a direct sum of $r$ copies of the same cyclic group of prime power order, we show that there are exactly ${\textstyle \frac{1}{6}}(r+1)(r+2)(r+3)$ distinct isomorphism classes of associative interchange rings based on $A$. Several examples are given and further comments are made about the general theory of interchange rings.
Let $R$ be a commutative Gorenstein ring. A result of Araya reduces the Auslander–Reiten conjecture on the vanishing of self-extensions to the case where $R$ has Krull dimension at most one. In this paper we extend Araya’s result to certain $R$-algebras. As a consequence of our argument, we obtain examples of bound quiver algebras that satisfy the Auslander–Reiten conjecture.
Let $F$ be a field of characteristic $p\geq 0$ and $G$ any group. In this article, the Engel property of the group of units of the group algebra $FG$ is investigated. We show that if $G$ is locally finite, then ${\mathcal{U}}(FG)$ is an Engel group if and only if $G$ is locally nilpotent and $G^{\prime }$ is a $p$-group. Suppose that the set of nilpotent elements of $FG$ is finite. It is also shown that if $G$ is torsion, then ${\mathcal{U}}(FG)$ is an Engel group if and only if $G^{\prime }$ is a finite $p$-group and $FG$ is Lie Engel, if and only if ${\mathcal{U}}(FG)$ is locally nilpotent. If $G$ is nontorsion but $FG$ is semiprime, we show that the Engel property of ${\mathcal{U}}(FG)$ implies that the set of torsion elements of $G$ forms an abelian normal subgroup of $G$.