We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In a recent paper of Ellenberg, Oberlin, and Tao [The Kakeya set and maximal conjectures for algebraic varieties over finite fields. Mathematika56 (2010), 1–25], the authors asked whether there are Besicovitch phenomena in ${ \mathbb{F} }_{q} \mathop{[[t] ] }\nolimits ^{n} $. In this paper, we answer their question in the affirmative by explicitly constructing a Kakeya set of measure zero in ${ \mathbb{F} }_{q} \mathop{[[t] ] }\nolimits ^{n} $. Furthermore, we prove that any Kakeya set in ${ \mathbb{F} }_{q} \mathop{[[t] ] }\nolimits ^{2} $ or ${ \mathbb{Z} }_{p}^{2} $ is of Minkowski dimension 2.
We investigate the ray-length distributions for two different rectangular versions of Gilbert's tessellation (see Gilbert (1967)). In the full rectangular version, lines extend either horizontally (east- and west-growing rays) or vertically (north- and south-growing rays) from seed points which form a Poisson point process, each ray stopping when another ray is met. In the half rectangular version, east- and south-growing rays do not interact with west and north rays. For the half rectangular tessellation, we compute analytically, via recursion, a series expansion for the ray-length distribution, whilst, for the full rectangular version, we develop an accurate simulation technique, based in part on the stopping-set theory for Poisson processes (see Zuyev (1999)), to accomplish the same. We demonstrate the remarkable fact that plots of the two distributions appear to be identical when the intensity of seeds in the half model is twice that in the full model. In this paper we explore this coincidence, mindful of the fact that, for one model, our results are from a simulation (with inherent sampling error). We go on to develop further analytic theory for the half-Gilbert model using stopping-set ideas once again, with some novel features. Using our theory, we obtain exact expressions for the first and second moments of the ray length in the half-Gilbert model. For all practical purposes, these results can be applied to the full-Gilbert model—as much better approximations than those provided by Mackisack and Miles (1996).
We prove an upper bound on sums of squares of minors of $\{+1, -1\}$-matrices. The bound is sharp for Hadamard matrices, a result due to de Launey and Levin [‘$(1,-1)$-matrices with near-extremal properties’, SIAM J. Discrete Math.23(2009), 1422–1440], but our proof is simpler. We give several corollaries relevant to minors of Hadamard matrices.
We raise and investigate the following problem which one can regard as a very close relative of the densest sphere packing problem. If the Euclidean 3-space is partitioned into convex cells each containing a unit ball, how should the shapes of the cells be designed to minimize the average surface area of the cells? In particular, we prove that the average surface area in question is always at least
Tessellations of R3 that use convex polyhedral cells to fill the space can be extremely complicated. This is especially so for tessellations which are not ‘facet-to-facet’, that is, for those where the facets of a cell do not necessarily coincide with the facets of that cell's neighbours. Adjacency concepts between neighbouring cells (or between neighbouring cell elements) are not easily formulated when facets do not coincide. In this paper we make the first systematic study of these topological relationships when a tessellation of R3 is not facet-to-facet. The results derived can also be applied to the simpler facet-to-facet case. Our study deals with both random tessellations and deterministic ‘tilings’. Some new theory for planar tessellations is also given.
Mixed-level orthogonal arrays are basic structures in experimental design. We develop three algorithms that compute Rao- and Gilbert-Varshamov-type bounds for mixed-level orthogonal arrays. The computational complexity of the terms involved in the original combinatorial representations of these bounds can grow fast as the parameters of the arrays increase and this justifies the construction of these algorithms. The first is a recursive algorithm that computes the bounds exactly, the second is based on an asymptotic analysis, and the third is a simulation algorithm. They are all based on the representation of the combinatorial expressions that appear in the bounds as expectations involving a symmetric random walk. The Markov property of the underlying random walk gives the recursive formula to compute the expectations. A large deviation (LD) analysis of the expectations provides the asymptotic algorithm. The asymptotically optimal importance sampling (IS) of the same expectation provides the simulation algorithm. Both the LD analysis and the construction of the IS algorithm use a representation of these problems as a sequence of stochastic optimal control problems converging to a limit calculus of a variations problem. The construction of the IS algorithm uses a recently discovered method of using subsolutions to the Hamilton-Jacobi-Bellman equations associated with the limit problem.
The so-called STIT tessellations form a class of homogeneous (spatially stationary) tessellations in Rd which are stable under the nesting/iteration operation. In this paper we establish the mixing property for these tessellations and give the decay rate of P(A ∩ M = ∅, ThB ∩ M = ∅) / P(A ∩ Y = ∅)P(B ∩ Y = ∅) − 1, where A and B are both compact connected sets, h is a vector of Rd, Th is the corresponding translation operator, and M is a STIT tessellation.
We present new ideas about the type of random tessellation which evolves through successive division of its cells. These ideas are developed in an intuitive way, with many pictures and only a modicum of mathematical formalism–so that the wide application of the ideas is clearly apparent to all readers. A vast number of new tessellation models, with known probability distribution for the volume of the typical cell, follow from the concepts in this paper. There are other interesting models for which results are not presented (or presented only through simulation methods), but these models have illustrative value. A large agenda of further research is opened up by the ideas in this paper.
We discuss n4 configurations of n points and n planes in three-dimensional projective space. These have four points on each plane, and four planes through each point. When the last of the 4n incidences between points and planes happens as a consequence of the preceding 4n−1 the configuration is called a ‘theorem’. Using a graph-theoretic search algorithm we find that there are two 84 and one 94 ‘theorems’. One of these 84 ‘theorems’ was already found by Möbius in 1828, while the 94 ‘theorem’ is related to Desargues’ ten-point configuration. We prove these ‘theorems’ by various methods, and connect them with other questions, such as forbidden minors in graph theory, and sets of electrons that are energy minimal.
For a class of ‘linear’ sudoku solutions, we construct mutually orthogonal families of maximal size for all square orders, and we show that all such solutions must lie in the same orbit of a symmetry group preserving sudoku solutions.
For three points , and in the n-dimensional space 𝔽nq over the finite field 𝔽q of q elements we give a natural interpretation of an acute angle triangle defined by these points. We obtain an upper bound on the size of a set 𝒵 such that all triples of distinct points define acute angle triangles. A similar question in the real space ℛn dates back to P. Erdős and has been studied by several authors.
A one-dimensional tiling is a bi-infinite string on a finite alphabet, and its tiling semigroup is an inverse semigroup whose elements are marked finite substrings of the tiling. We characterize the structure of these semigroups in the periodic case, in which the tiling is obtained by repetition of a fixed primitive word.
Qualified difference sets (QDS) composed of unions of cyclotomic classes are discussed. An exhaustive computer search for such QDS and modified QDS that also possess the zero residue has been conducted for all powers n=4,6,8 and 10. Two new families were discovered in the case n=8 and some new isolated systems were discovered for n=6 and n=10.
The core of a graph Γ is the smallest graph Δ that is homomorphically equivalent to Γ (that is, there exist homomorphisms in both directions). The core of Γ is unique up to isomorphism and is an induced subgraph of Γ. We give a construction in some sense dual to the core. The hull of a graph Γ is a graph containing Γ as a spanning subgraph, admitting all the endomorphisms of Γ, and having as core a complete graph of the same order as the core of Γ. This construction is related to the notion of a synchronizing permutation group, which arises in semigroup theory; we provide some more insight by characterizing these permutation groups in terms of graphs. It is known that the core of a vertex-transitive graph is vertex-transitive. In some cases we can make stronger statements: for example, if Γ is a non-edge-transitive graph, we show that either the core of Γ is complete, or Γ is its own core. Rank-three graphs are non-edge-transitive. We examine some families of these to decide which of the two alternatives for the core actually holds. We will see that this question is very difficult, being equivalent in some cases to unsolved questions in finite geometry (for example, about spreads, ovoids and partitions into ovoids in polar spaces).
A systematic study of random Laguerre tessellations, weighted generalisations of the well-known Voronoi tessellations, is presented. We prove that every normal tessellation with convex cells in dimension three and higher is a Laguerre tessellation. Tessellations generated by stationary marked Poisson processes are then studied in detail. For these tessellations, we obtain integral formulae for geometric characteristics and densities of the typical k-faces. We present a formula for the linear contact distribution function and prove various limit results for convergence of Laguerre to Poisson-Voronoi tessellations. The obtained integral formulae are subsequently evaluated numerically for the planar case, demonstrating their applicability for practical purposes.
We propose the use of finite Fourier series as an alternative means of representing ovals in projective planes of even order. As an example to illustrate the method's potential, we show that the set {wj + w3j + w−3j: 0 ≤ j ≤ 2h} ⊂ GF (22h) forms an oval if w is a primitive (2h + 1)st root of unity in GF(22h) and GF(22h) is viewed as an affine plane over GF(2h). For the verification, we only need some elementary ‘trigonometric identities’ and a basic irreducibility lemma that is of independent interest. Finally, we show that our example is the Payne oval when h is odd, and the Adelaide oval when h is even.
It is known that 4 ≤ x(ℝ2) ≤ 7, where x(ℝ2) is the number of colour necessary to colour each point of Euclidean 2-space so that no two points lying distance 1 apart have the same colour. Any lattice-sublattice colouring sucheme for R2 must use at least 7 colour to have an excluded distance. This article shows that at least 6 colours are necessary for an excluded distance when convex polygonal tiles (all with area greater than some positive constant) are used as the colouring base.