We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We discuss several ways of packing a hyperbolic surface with circles (of either varying radii or all being congruent) or horocycles, and note down some observations related to their symmetries (or the absence thereof).
We demonstrate that every difference set in a finite Abelian group is equivalent to a certain ‘regular’ covering of the lattice
$ A_n = \{ \boldsymbol {x} \in \mathbb {Z} ^{n+1} : \sum _{i} x_i = 0 \} $
with balls of radius
$ 2 $
under the
$ \ell _1 $
metric (or, equivalently, a covering of the integer lattice
$ \mathbb {Z} ^n $
with balls of radius
$ 1 $
under a slightly different metric). For planar difference sets, the covering is also a packing, and therefore a tiling, of
$ A_n $
. This observation leads to a geometric reformulation of the prime power conjecture and of other statements involving Abelian difference sets.
We obtain a nontrivial upper bound for the multiplicative energy of any sufficiently large subset of a subvariety of a finite algebraic group. We also find some applications of our results to the growth of conjugates classes, estimates of exponential sums, and restriction phenomenon.
We prove and generalise a conjecture in [MPP4] about the asymptotics of
$\frac{1}{\sqrt{n!}} f^{\lambda/\mu}$
, where
$f^{\lambda/\mu}$
is the number of standard Young tableaux of skew shape
$\lambda/\mu$
which have stable limit shape under the
$1/\sqrt{n}$
scaling. The proof is based on the variational principle on the partition function of certain weighted lozenge tilings.
We present a single, connected tile which can tile the plane but only nonperiodically. The tile is hexagonal with edge markings, which impose simple rules as to how adjacent tiles are allowed to meet across edges. The first of these rules is a standard matching rule, that certain decorations match across edges. The second condition is a new type of matching rule, which allows tiles to meet only when certain decorations in a particular orientation are given the opposite charge. This forces the tiles to form a hierarchy of triangles, following a central idea of the Socolar–Taylor tilings. However, the new edge-to-edge orientational matching rule forces this structure in a very different way, which allows for a surprisingly simple proof of aperiodicity. We show that the hull of all tilings satisfying our rules is uniquely ergodic and that almost all tilings in the hull belong to a minimal core of tilings generated by substitution. Identifying tilings which are charge-flips of each other, these tilings are shown to have pure point dynamical spectrum and a regular model set structure.
Many problems in combinatorial linear algebra require upper bounds on the number of solutions to an underdetermined system of linear equations $Ax = b$, where the coordinates of the vector x are restricted to take values in some small subset (e.g. $\{\pm 1\}$) of the underlying field. The classical ways of bounding this quantity are to use either a rank bound observation due to Odlyzko or a vector anti-concentration inequality due to Halász. The former gives a stronger conclusion except when the number of equations is significantly smaller than the number of variables; even in such situations, the hypotheses of Halász’s inequality are quite hard to verify in practice. In this paper, using a novel approach to the anti-concentration problem for vector sums, we obtain new Halász-type inequalities that beat the Odlyzko bound even in settings where the number of equations is comparable to the number of variables. In addition to being stronger, our inequalities have hypotheses that are considerably easier to verify. We present two applications of our inequalities to combinatorial (random) matrix theory: (i) we obtain the first non-trivial upper bound on the number of $n\times n$ Hadamard matrices and (ii) we improve a recent bound of Deneanu and Vu on the probability of normality of a random $\{\pm 1\}$ matrix.
We investigate additive properties of sets
$A,$
where
$A=\{a_1,a_2,\ldots ,a_k\}$
is a monotone increasing set of real numbers, and the differences of consecutive elements are all distinct. It is known that
$|A+B|\geq c|A||B|^{1/2}$
for any finite set of numbers
$B.$
The bound is tight up to the constant multiplier. We give a new proof to this result using bounds on crossing numbers of geometric graphs. We construct examples showing the limits of possible improvements. In particular, we show that there are arbitrarily large sets with different consecutive differences and sub-quadratic sumset size.
A subgraph of an edge-coloured graph is called rainbow if all its edges have different colours. We prove a rainbow version of the blow-up lemma of Komlós, Sárközy, and Szemerédi that applies to almost optimally bounded colourings. A corollary of this is that there exists a rainbow copy of any bounded-degree spanning subgraph H in a quasirandom host graph G, assuming that the edge-colouring of G fulfills a boundedness condition that is asymptotically best possible.
This has many applications beyond rainbow colourings: for example, to graph decompositions, orthogonal double covers, and graph labellings.
By taking square lattices as a two-dimensional analogue to Beatty sequences, we are motivated to define and explore the notion of complementary lattices. In particular, we present a continuous one-parameter family of complementary lattices. This main result then yields several novel examples of complementary sequences, along with a geometric proof of the fundamental property of Beatty sequences.
The triangle packing number v(G) of a graph G is the maximum size of a set of edge-disjoint triangles in G. Tuza conjectured that in any graph G there exists a set of at most 2v(G) edges intersecting every triangle in G. We show that Tuza’s conjecture holds in the random graph G = G(n, m), when m ⩽ 0.2403n3/2 or m ⩾ 2.1243n3/2. This is done by analysing a greedy algorithm for finding large triangle packings in random graphs.
Let V be an n-set, and let X be a random variable taking values in the power-set of V. Suppose we are given a sequence of random coupons
$X_1, X_2, \ldots $
, where the
$X_i$
are independent random variables with distribution given by X. The covering time T is the smallest integer
$t\geq 0$
such that
$\bigcup_{i=1}^t X_i=V$
. The distribution of T is important in many applications in combinatorial probability, and has been extensively studied. However the literature has focused almost exclusively on the case where X is assumed to be symmetric and/or uniform in some way.
In this paper we study the covering time for much more general random variables X; we give general criteria for T being sharply concentrated around its mean, precise tools to estimate that mean, as well as examples where T fails to be concentrated and when structural properties in the distribution of X allow for a very different behaviour of T relative to the symmetric/uniform case.
We show that for all $m,k,r\in \mathbb{N}$, there is an $n\in \mathbb{N}$ such that whenever $L$ is a Latin square of order $m$ and the Cartesian product $L^{n}$ of $n$ copies of $L$ is $r$-coloured, there is a monochrome Latin subsquare of $L^{n}$, isotopic to $L^{k}$. In particular, for every prime $p$ and for all $k,r\in \mathbb{N}$, there is an $n\in \mathbb{N}$ such that whenever the multiplication table $L({\mathbb{Z}_{p}}^{n})$ of the group ${\mathbb{Z}_{p}}^{n}$ is $r$-coloured, there is a monochrome Latin subsquare of order $p^{k}$. On the other hand, we show that for every group $G$ of order $\leq 15$, there is a 2-colouring of $L(G)$ without a nontrivial monochrome Latin subsquare.
Akbari and Alipour [1] conjectured that any Latin array of order n with at least n2/2 symbols contains a transversal. For large n, we confirm this conjecture, and moreover, we show that n399/200 symbols suffice.
We report the results of a computer enumeration that found that there are 3155 perfect 1-factorisations (P1Fs) of the complete graph $K_{16}$. Of these, 89 have a nontrivial automorphism group (correcting an earlier claim of 88 by Meszka and Rosa [‘Perfect 1-factorisations of $K_{16}$ with nontrivial automorphism group’, J. Combin. Math. Combin. Comput.47 (2003), 97–111]). We also (i) describe a new invariant which distinguishes between the P1Fs of $K_{16}$, (ii) observe that the new P1Fs produce no atomic Latin squares of order 15 and (iii) record P1Fs for a number of large orders that exceed prime powers by one.
We obtain a new sum–product estimate in prime fields for sets of large cardinality. In particular, we show that if $A\subseteq \mathbb{F}_{p}$ satisfies $|A|\leq p^{64/117}$ then $\max \{|A\pm A|,|AA|\}\gtrsim |A|^{39/32}.$ Our argument builds on and improves some recent results of Shakan and Shkredov [‘Breaking the 6/5 threshold for sums and products modulo a prime’, Preprint, 2018, arXiv:1806.07091v1] which use the eigenvalue method to reduce to estimating a fourth moment energy and the additive energy $E^{+}(P)$ of some subset $P\subseteq A+A$. Our main novelty comes from reducing the estimation of $E^{+}(P)$ to a point–plane incidence bound of Rudnev [‘On the number of incidences between points and planes in three dimensions’, Combinatorica38(1) (2017), 219–254] rather than a point–line incidence bound used by Shakan and Shkredov.
We construct a family of self-affine tiles in $\mathbb{R}^{d}$ ($d\geqslant 2$) with noncollinear digit sets, which naturally generalizes a class studied originally by Q.-R. Deng and K.-S. Lau in $\mathbb{R}^{2}$, and its extension to $\mathbb{R}^{3}$ by the authors. We obtain necessary and sufficient conditions for the tiles to be connected and for their interiors to be contractible.
An n × n partial Latin square P is called α-dense if each row and column has at most αn non-empty cells and each symbol occurs at most αn times in P. An n × n array A where each cell contains a subset of {1,…, n} is a (βn, βn, βn)-array if each symbol occurs at most βn times in each row and column and each cell contains a set of size at most βn. Combining the notions of completing partial Latin squares and avoiding arrays, we prove that there are constants α, β > 0 such that, for every positive integer n, if P is an α-dense n × n partial Latin square, A is an n × n (βn, βn, βn)-array, and no cell of P contains a symbol that appears in the corresponding cell of A, then there is a completion of P that avoids A; that is, there is a Latin square L that agrees with P on every non-empty cell of P, and, for each i, j satisfying 1 ≤ i, j ≤ n, the symbol in position (i, j) in L does not appear in the corresponding cell of A.
Le diagrams and Grassmann necklaces both index the collection of positroids in the nonnegative Grassmannian Gr≥0(k, n), but they excel at very different tasks: for example, the dimension of a positroid is easily extracted from its Le diagram, while the list of bases of a positroid is far more easily obtained from its Grassmann necklace. Explicit bijections between the two are, therefore, desirable. An algorithm for turning a Le diagram into a Grassmann necklace already exists; in this note, we give the reverse algorithm.
We discuss 1-factorizations of complete graphs that “match” a given Hadamard matrix. We prove the existence of these factorizations for two families of Hadamard matrices: Walsh matrices and certain Paley matrices.