To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give an explicit quadratic Gröbner basis for generalized Chow rings of supersolvable built lattices, with the help of the operadic structure on geometric lattices introduced in a previous article. This shows that the generalized Chow rings associated to minimal building sets of supersolvable lattices are Koszul. As another consequence, we get that the cohomology algebras of the components of the extended modular operad in genus $0$ are Koszul.
We give a crystal structure on the set of Gelfand–Tsetlin patterns (GTPs), which parametrize bases for finite-dimensional irreducible representations of the general linear Lie algebra. The crystal data are given in closed form and are expressed using tropical polynomial functions of the entries of the patterns. We prove that with this crystal structure, the natural bijection between GTPs and semistandard Young tableaux is a crystal isomorphism.
The Newell–Littlewood (NL) numbers are tensor product multiplicities of Weyl modules for the classical groups in the stable range. Littlewood–Richardson (LR) coefficients form a special case. Klyachko connected eigenvalues of sums of Hermitian matrices to the saturated LR-cone and established defining linear inequalities. We prove analogues for the saturated NL-cone: a description by Extended Horn inequalities (as conjectured in part II of this series), where, using a result of King’s, this description is controlled by the saturated LR-cone and thereby recursive, just like the Horn inequalities; a minimal list of defining linear inequalities; an eigenvalue interpretation; and a factorization of Newell–Littlewood numbers, on the boundary.
We study the Macdonald intersection polynomials $\operatorname {I}_{\mu ^{(1)},\dots ,\mu ^{(k)}}[X;q,t]$, which are indexed by $k$-tuples of partitions $\mu ^{(1)},\dots ,\mu ^{(k)}$. These polynomials are conjectured to be equal to the bigraded Frobenius characteristic of the intersection of Garsia–Haiman modules, as proposed by the science fiction conjecture of Bergeron and Garsia. In this work, we establish the vanishing identity and the shape independence of the Macdonald intersection polynomials. Additionally, we unveil a remarkable connection between $\operatorname {I}_{\mu ^{(1)},\dots ,\mu ^{(k)}}$ and the character $\nabla e_{k-1}$ of diagonal coinvariant algebra by employing the plethystic formula for the Macdonald polynomials of Garsia, Haiman, and Tesler. Furthermore, we establish a connection between $\operatorname {I}_{\mu ^{(1)},\dots ,\mu ^{(k)}}$ and the shuffle formula $D_{k-1}[X;q,t]$, utilizing novel combinatorial tools such as the column exchange rule and the lightning bolt formula for Macdonald intersection polynomials. Notably, our findings provide a new proof for the shuffle theorem.
In this paper, we establish Newton–Maclaurin-type inequalities for functions arising from linear combinations of primitively symmetric polynomials. This generalization extends the classical Newton–Maclaurin inequality to a broader class of functions.
We find an Lascoux–Leclerc–Thibon (LLT)-type formula for a general power of the nabla operator of [BG99] applied to the Cauchy product for the modified Macdonald polynomials, and use it to deduce a new proof of the generalized shuffle theorem describing $\nabla^k e_n$ [HHL+05a, CM18, Mel21], and the formula for $(\nabla^k p_1^n,e_n)$ from [EH16, GH22] as corollaries. We give a direct proof of the theorem by verifying that the LLT expansion satisfies the defining properties of $\nabla^k$, such as triangularity in the dominance order, as well as a geometric proof based on a method for counting bundles on $\mathbb{P}^1$ due to the second author [Mel20]. These formulas are related to an affine paving of the type A unramified affine Springer fiber studied by Goresky, Kottwitz, and MacPherson in [GKM04], and also to Stanley’s chromatic symmetric functions.
In this study, we introduce multiple zeta functions with structures similar to those of symmetric functions such as the Schur P-, Schur Q-, symplectic and orthogonal functions in representation theory. Their basic properties, such as the domain of absolute convergence, are first considered. Then, by restricting ourselves to the truncated multiple zeta functions, we derive the Pfaffian expression of the Schur Q-multiple zeta functions, the sum formula for Schur P- and Schur Q-multiple zeta functions, the determinant expressions of symplectic and orthogonal Schur multiple zeta functions by making an assumption on variables. Finally, we generalize those to the quasi-symmetric functions.
Let W be a group endowed with a finite set S of generators. A representation $(V,\rho )$ of W is called a reflection representation of $(W,S)$ if $\rho (s)$ is a (generalized) reflection on V for each generator $s \in S$. In this article, we prove that for any irreducible reflection representation V, all the exterior powers $\bigwedge ^d V$, $d = 0, 1, \dots , \dim V$, are irreducible W-modules, and they are non-isomorphic to each other. This extends a theorem of R. Steinberg which is stated for Euclidean reflection groups. Moreover, we prove that the exterior powers (except for the 0th and the highest power) of two non-isomorphic reflection representations always give non-isomorphic W-modules. This allows us to construct numerous pairwise non-isomorphic irreducible representations for such groups, especially for Coxeter groups.
We examine bicoset digraphs and their natural properties from the point of view of symmetry. We then consider connected bicoset digraphs that are X-joins with collections of empty graphs, and show that their automorphism groups can be obtained from their natural irreducible quotients. We further show that such digraphs can be recognised from their connection sets.
The preferential attachment model is a natural and popular random graph model for a growing network that contains very well-connected ‘hubs’. We study the higher-order connectivity of such a network by investigating the topological properties of its clique complex. We concentrate on the Betti numbers, a sequence of topological invariants of the complex related to the numbers of holes (equivalently, repeated connections) of different dimensions. We prove that the expected Betti numbers grow sublinearly fast, with the trivial exceptions of those at dimensions 0 and 1. Our result also shows that preferential attachment graphs undergo infinitely many phase transitions within the parameter regime where the limiting degree distribution has an infinite variance. Regarding higher-order connectivity, our result shows that preferential attachment favors higher-order connectivity. We illustrate our theoretical results with simulations.
We give an explicit raising operator formula for the modified Macdonald polynomials $\tilde {H}_{\mu }(X;q,t)$, which follows from our recent formula for $\nabla $ on an LLT polynomial and the Haglund-Haiman-Loehr formula expressing modified Macdonald polynomials as sums of LLT polynomials. Our method just as easily yields a formula for a family of symmetric functions $\tilde {H}^{1,n}(X;q,t)$ that we call $1,n$-Macdonald polynomials, which reduce to a scalar multiple of $\tilde {H}_{\mu }(X;q,t)$ when $n=1$. We conjecture that the coefficients of $1,n$-Macdonald polynomials in terms of Schur functions belong to ${\mathbb N}[q,t]$, generalizing Macdonald positivity.
A pebble tree is an ordered tree where each node receives some colored pebbles, in such a way that each unary node receives at least one pebble, and each subtree has either one more or as many leaves as pebbles of each color. We show that the contraction poset on pebble trees is isomorphic to the face poset of a convex polytope called pebble tree polytope. Beside providing intriguing generalizations of the classical permutahedra and associahedra, our motivation is that the faces of the pebble tree polytopes provide realizations as convex polytopes of all assocoipahedra constructed by K. Poirier and T. Tradler only as polytopal complexes.
We study Schubert polynomials using geometry of infinite-dimensional flag varieties and degeneracy loci. Applications include Graham-positivity of coefficients appearing in equivariant coproduct formulas and expansions of back-stable and enriched Schubert polynomials. We also construct an embedding of the type C flag variety and study the corresponding pullback map on (equivariant) cohomology rings.
Schubert polynomials are polynomial representatives of Schubert classes in the cohomology of the complete flag variety and have a combinatorial formulation in terms of bumpless pipe dreams. Quantum double Schubert polynomials are polynomial representatives of Schubert classes in the torus-equivariant quantum cohomology of the complete flag variety, but no analogous combinatorial formulation had been discovered. We introduce a generalization of the bumpless pipe dreams called quantum bumpless pipe dreams, giving a novel combinatorial formula for quantum double Schubert polynomials as a sum of binomial weights of quantum bumpless pipe dreams. We give a bijective proof for this formula by showing that the sum of binomial weights satisfies a defining transition equation.
In our previous paper, we gave a presentation of the torus-equivariant quantum K-theory ring $QK_{H}(Fl_{n+1})$ of the (full) flag manifold $Fl_{n+1}$ of type $A_{n}$ as a quotient of a polynomial ring by an explicit ideal. In this paper, we prove that quantum double Grothendieck polynomials, introduced by Lenart-Maeno, represent the corresponding (opposite) Schubert classes in the quantum K-theory ring $QK_{H}(Fl_{n+1})$ under this presentation. The main ingredient in our proof is an explicit formula expressing the semi-infinite Schubert class associated to the longest element of the finite Weyl group, which is proved by making use of the general Chevalley formula for the torus-equivariant K-group of the semi-infinite flag manifold associated to $SL_{n+1}(\mathbb {C})$.
We prove that a group $\Gamma $ admits a discrete, topological (equivalently, smooth) action on some simply connected 3-manifold if and only if $\Gamma $ has a Cayley complex embeddable—with certain natural restrictions—in one of the following four 3-manifolds: (i) $\mathbb {S}^3$, (ii) $\mathbb {R}^3$, (iii) $\mathbb {S}^2 \times \mathbb R$, and (iv) the complement of a tame Cantor set in $\mathbb {S}^3$. The fact that these are the only simply connected 3-manifolds that allow such actions is a consequence of the Thurston–Perelman geometrization theorem.
We give a complete combinatorial classification of the parabolic Verma modules in the principal block of the parabolic category $\mathcal{O}$ associated with a minimal or a maximal parabolic subalgebra of the special linear Lie algebra for which the answer to Kostant’s problem is positive.
Let $(W,S)$ be a Coxeter system, and write $S=\{s_i:i\in I\}$, where I is a finite index set. Fix a nonempty convex subset $\mathscr {L}$ of W. If W is of type A, then $\mathscr {L}$ is the set of linear extensions of a poset, and there are important Bender–Knuth involutions$\mathrm {BK}_i\colon \mathscr {L}\to \mathscr {L}$ indexed by elements of I. For arbitrary W and for each $i\in I$, we introduce an operator $\tau _i\colon W\to W$ (depending on $\mathscr {L}$) that we call a noninvertible Bender–Knuth toggle; this operator restricts to an involution on $\mathscr {L}$ that coincides with $\mathrm {BK}_i$ in type A. Given a Coxeter element $c=s_{i_n}\cdots s_{i_1}$, we consider the operator $\mathrm {Pro}_c=\tau _{i_n}\cdots \tau _{i_1}$. We say W is futuristic if for every nonempty finite convex set $\mathscr {L}$, every Coxeter element c and every $u\in W$, there exists an integer $K\geq 0$ such that $\mathrm {Pro}_c^K(u)\in \mathscr {L}$. We prove that finite Coxeter groups, right-angled Coxeter groups, rank-3 Coxeter groups, affine Coxeter groups of types $\widetilde A$ and $\widetilde C$, and Coxeter groups whose Coxeter graphs are complete are all futuristic. When W is finite, we actually prove that if $s_{i_N}\cdots s_{i_1}$ is a reduced expression for the long element of W, then $\tau _{i_N}\cdots \tau _{i_1}(W)=\mathscr {L}$; this allows us to determine the smallest integer $\mathrm {M}(c)$ such that $\mathrm {Pro}_c^{{\mathrm {M}}(c)}(W)=\mathscr {L}$ for all $\mathscr {L}$. We also exhibit infinitely many non-futuristic Coxeter groups, including all irreducible affine Coxeter groups that are not of type $\widetilde A$, $\widetilde C$, or $\widetilde G_2$.
We show that if $\Gamma $ is a point group of $\mathbb {R}^{k+1}$ of order two for some $k\geq 2$ and $\mathcal {S}$ is a k-pseudomanifold which has a free automorphism of order two, then either $\mathcal {S}$ has a $\Gamma $-symmetric infinitesimally rigid realisation in ${\mathbb R}^{k+1}$ or $k=2$ and $\Gamma $ is a half-turn rotation group. This verifies a conjecture made by Klee, Nevo, Novik and Zheng for the case when $\Gamma $ is a point-inversion group. Our result implies that Stanley’s lower bound theorem for centrally symmetric polytopes extends to pseudomanifolds with a free simplicial automorphism of order 2, thus verifying (the inequality part of) another conjecture of Klee, Nevo, Novik and Zheng. Both results actually apply to a much larger class of simplicial complexes – namely, the circuits of the simplicial matroid. The proof of our rigidity result adapts earlier ideas of Fogelsanger to the setting of symmetric simplicial complexes.
For finite nilpotent groups $J$ and $N$, suppose $J$ acts on $N$ via automorphisms. We exhibit a decomposition of the first cohomology set in terms of the first cohomologies of the Sylow $p$-subgroups of $J$ that mirrors the primary decomposition of $H^1(J,N)$ for abelian $N$. We then show that if $N \rtimes J$ acts on some non-empty set $\Omega$, where the action of $N$ is transitive and for each prime $p$ a Sylow $p$-subgroup of $J$ fixes an element of $\Omega$, then $J$ fixes an element of $\Omega$.