To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce a new class of permutations, called web permutations. Using these permutations, we provide a combinatorial interpretation for entries of the transition matrix between the Specht and $\operatorname {SL}_2$-web bases of the irreducible $ \mathfrak {S}_{2n} $-representation indexed by $ (n,n) $, which answers Rhoades’s question. Furthermore, we study enumerative properties of these permutations.
In the setting of finite groups, suppose $J$ acts on $N$ via automorphisms so that the induced semidirect product $N\rtimes J$ acts on some non-empty set $\Omega$, with $N$ acting transitively. Glauberman proved that if the orders of $J$ and $N$ are coprime, then $J$ fixes a point in $\Omega$. We consider the non-coprime case and show that if $N$ is abelian and a Sylow $p$-subgroup of $J$ fixes a point in $\Omega$ for each prime $p$, then $J$ fixes a point in $\Omega$. We also show that if $N$ is nilpotent, $N\rtimes J$ is supersoluble, and a Sylow $p$-subgroup of $J$ fixes a point in $\Omega$ for each prime $p$, then $J$ fixes a point in $\Omega$.
We make precise and prove a conjecture of Klivans about actions of the sandpile group on spanning trees. More specifically, the conjecture states that there exists a unique ‘suitably nice’ sandpile torsor structure on plane graphs which is induced by rotor-routing.
First, we rigorously define a sandpile torsor algorithm (on plane graphs) to be a map which associates each plane graph (i.e., planar graph with an appropriate ribbon structure) with a free transitive action of its sandpile group on its spanning trees. Then, we define a notion of consistency, which requires a torsor algorithm to be preserved with respect to a certain class of contractions and deletions. Using these definitions, we show that the rotor-routing sandpile torsor algorithm is consistent. Furthermore, we demonstrate that there are only three other consistent algorithms on plane graphs, which all have the same structure as rotor-routing.
We also define sandpile torsor algorithms on regular matroids and suggest a notion of consistency in this context. We conjecture that the Backman-Baker-Yuen algorithm is consistent, and that there are only three other consistent sandpile torsor algorithms on regular matroids, all with the same structure.
If ${\mathbf v} \in {\mathbb R}^{V(X)}$ is an eigenvector for eigenvalue $\lambda $ of a graph X and $\alpha $ is an automorphism of X, then $\alpha ({\mathbf v})$ is also an eigenvector for $\lambda $. Thus, it is rather exceptional for an eigenvalue of a vertex-transitive graph to have multiplicity one. We study cubic vertex-transitive graphs with a nontrivial simple eigenvalue, and discover remarkable connections to arc-transitivity, regular maps, and number theory.
We study some combinatorial properties of higher-dimensional partitions which generalize plane partitions. We present a natural bijection between d-dimensional partitions and d-dimensional arrays of nonnegative integers. This bijection has a number of important applications. We introduce a statistic on d-dimensional partitions, called the corner-hook volume, whose generating function has the formula of MacMahon’s conjecture. We obtain multivariable formulas whose specializations give analogues of various formulas known for plane partitions. We also introduce higher-dimensional analogues of dual stable Grothendieck polynomials which are quasisymmetric functions and whose specializations enumerate higher-dimensional partitions of a given shape. Finally, we show probabilistic connections with a directed last passage percolation model in $\mathbb {Z}^d$.
We prove quantitative bounds for the inverse theorem for Gowers uniformity norms $\mathsf {U}^5$ and $\mathsf {U}^6$ in $\mathbb {F}_2^n$. The proof starts from an earlier partial result of Gowers and the author which reduces the inverse problem to a study of algebraic properties of certain multilinear forms. The bulk of the work in this paper is a study of the relationship between the natural actions of $\operatorname {Sym}_4$ and $\operatorname {Sym}_5$ on the space of multilinear forms and the partition rank, using an algebraic version of regularity method. Along the way, we give a positive answer to a conjecture of Tidor about approximately symmetric multilinear forms in five variables, which is known to be false in the case of four variables. Finally, we discuss the possible generalization of the argument for $\mathsf {U}^k$ norms.
A result of Corfield, Sati, and Schreiber asserts that $\mathfrak {gl}_{n}$-weight systems associated with the defining representation are quantum states. In this short note, we extend this result to all $\mathfrak {gl}_{n}$-weight systems corresponding to labeling by symmetric and exterior powers of the defining representation.
We generalize the shuffle theorem and its $(km,kn)$ version, as conjectured by Haglund et al. and Bergeron et al. and proven by Carlsson and Mellit, and Mellit, respectively. In our version the $(km,kn)$ Dyck paths on the combinatorial side are replaced by lattice paths lying under a line segment whose x and y intercepts need not be integers, and the algebraic side is given either by a Schiffmann algebra operator formula or an equivalent explicit raising operator formula. We derive our combinatorial identity as the polynomial truncation of an identity of infinite series of $\operatorname {\mathrm {GL}}_{l}$ characters, expressed in terms of infinite series versions of LLT polynomials. The series identity in question follows from a Cauchy identity for nonsymmetric Hall–Littlewood polynomials.
We prove the extended delta conjecture of Haglund, Remmel and Wilson, a combinatorial formula for $\Delta _{h_l}\Delta ' _{e_k} e_{n}$, where $\Delta ' _{e_k}$ and $\Delta _{h_l}$ are Macdonald eigenoperators and $e_n$ is an elementary symmetric function. We actually prove a stronger identity of infinite series of $\operatorname {\mathrm {GL}}_m$ characters expressed in terms of LLT series. This is achieved through new results in the theory of the Schiffmann algebra and its action on the algebra of symmetric functions.
A subset Y of the general linear group $\text{GL}(n,q)$ is called t-intersecting if $\text{rk}(x-y)\le n-t$ for all $x,y\in Y$, or equivalently x and y agree pointwise on a t-dimensional subspace of $\mathbb{F}_q^n$ for all $x,y\in Y$. We show that, if n is sufficiently large compared to t, the size of every such t-intersecting set is at most that of the stabiliser of a basis of a t-dimensional subspace of $\mathbb{F}_q^n$. In case of equality, the characteristic vector of Y is a linear combination of the characteristic vectors of the cosets of these stabilisers. We also give similar results for subsets of $\text{GL}(n,q)$ that intersect not necessarily pointwise in t-dimensional subspaces of $\mathbb{F}_q^n$ and for cross-intersecting subsets of $\text{GL}(n,q)$. These results may be viewed as variants of the classical Erdős–Ko–Rado Theorem in extremal set theory and are q-analogs of corresponding results known for the symmetric group. Our methods are based on eigenvalue techniques to estimate the size of the largest independent sets in graphs and crucially involve the representation theory of $\text{GL}(n,q)$.
A subset R of the vertex set of a graph $\Gamma $ is said to be $(\kappa ,\tau )$-regular if R induces a $\kappa $-regular subgraph and every vertex outside R is adjacent to exactly $\tau $ vertices in R. In particular, if R is a $(\kappa ,\tau )$-regular set of some Cayley graph on a finite group G, then R is called a $(\kappa ,\tau )$-regular set of G. Let H be a nontrivial normal subgroup of G, and $\kappa $ and $\tau $ a pair of integers satisfying $0\leq \kappa \leq |H|-1$, $1\leq \tau \leq |H|$ and $\gcd (2,|H|-1)\mid \kappa $. It is proved that (i) if $\tau $ is even, then H is a $(\kappa ,\tau )$-regular set of G; (ii) if $\tau $ is odd, then H is a $(\kappa ,\tau )$-regular set of G if and only if it is a $(0,1)$-regular set of G.
We study the ring of quasisymmetric polynomials in n anticommuting (fermionic) variables. Let $R_n$ denote the ring of polynomials in n anticommuting variables. The main results of this paper show the following interesting facts about quasisymmetric polynomials in anticommuting variables:
(1) The quasisymmetric polynomials in $R_n$ form a commutative subalgebra of $R_n$.
(2) There is a basis of the quotient of $R_n$ by the ideal $I_n$ generated by the quasisymmetric polynomials in $R_n$ that is indexed by ballot sequences. The Hilbert series of the quotient is given by
Let G be a finite group. Let $H, K$ be subgroups of G and $H \backslash G / K$ the double coset space. If Q is a probability on G which is constant on conjugacy classes ($Q(s^{-1} t s) = Q(t)$), then the random walk driven by Q on G projects to a Markov chain on $H \backslash G /K$. This allows analysis of the lumped chain using the representation theory of G. Examples include coagulation-fragmentation processes and natural Markov chains on contingency tables. Our main example projects the random transvections walk on $GL_n(q)$ onto a Markov chain on $S_n$ via the Bruhat decomposition. The chain on $S_n$ has a Mallows stationary distribution and interesting mixing time behavior. The projection illuminates the combinatorics of Gaussian elimination. Along the way, we give a representation of the sum of transvections in the Hecke algebra of double cosets, which describes the Markov chain as a mixture of Metropolis chains. Some extensions and examples of double coset Markov chains with G a compact group are discussed.
The superspace ring $\Omega _n$ is a rank n polynomial ring tensored with a rank n exterior algebra. Using an extension of the Vandermonde determinant to $\Omega _n$, the authors previously defined a family of doubly graded quotients ${\mathbb {W}}_{n,k}$ of $\Omega _n$, which carry an action of the symmetric group ${\mathfrak {S}}_n$ and satisfy a bigraded version of Poincaré Duality. In this paper, we examine the duality modules ${\mathbb {W}}_{n,k}$ in greater detail. We describe a monomial basis of ${\mathbb {W}}_{n,k}$ and give combinatorial formulas for its bigraded Hilbert and Frobenius series. These formulas involve new combinatorial objects called ordered set superpartitions. These are ordered set partitions $(B_1 \mid \cdots \mid B_k)$ of $\{1,\dots ,n\}$ in which the nonminimal elements of any block $B_i$ may be barred or unbarred.
We prove new mixing rate estimates for the random walks on homogeneous spaces determined by a probability distribution on a finite group $G$. We introduce the switched random walk determined by a finite set of probability distributions on $G$, prove that its long-term behaviour is determined by the Fourier joint spectral radius of the distributions, and give Hermitian sum-of-squares algorithms for the effective estimation of this quantity.
We demonstrate that two supersoluble complements of an abelian base in a finite split extension are conjugate if and only if, for each prime $p$, a Sylow $p$-subgroup of one complement is conjugate to a Sylow $p$-subgroup of the other. As a corollary, we find that any two supersoluble complements of an abelian subgroup $N$ in a finite split extension $G$ are conjugate if and only if, for each prime $p$, there exists a Sylow $p$-subgroup $S$ of $G$ such that any two complements of $S\cap N$ in $S$ are conjugate in $G$. In particular, restricting to supersoluble groups allows us to ease D. G. Higman's stipulation that the complements of $S\cap N$ in $S$ be conjugate within $S$. We then consider group actions and obtain a fixed point result for non-coprime actions analogous to Glauberman's lemma.
Let n be a nonnegative integer. For each composition $\alpha $ of n, Berg, Bergeron, Saliola, Serrano and Zabrocki introduced a cyclic indecomposable $H_n(0)$-module $\mathcal {V}_{\alpha }$ with a dual immaculate quasisymmetric function as the image of the quasisymmetric characteristic. In this paper, we study $\mathcal {V}_{\alpha }$s from the homological viewpoint. To be precise, we construct a minimal projective presentation of $\mathcal {V}_{\alpha }$ and a minimal injective presentation of $\mathcal {V}_{\alpha }$ as well. Using them, we compute $\mathrm {Ext}^1_{H_n(0)}(\mathcal {V}_{\alpha }, \mathbf {F}_{\beta })$ and $\mathrm {Ext}^1_{H_n(0)}( \mathbf {F}_{\beta }, \mathcal {V}_{\alpha })$, where $\mathbf {F}_{\beta }$ is the simple $H_n(0)$-module attached to a composition $\beta $ of n. We also compute $\mathrm {Ext}_{H_n(0)}^i(\mathcal {V}_{\alpha },\mathcal {V}_{\beta })$ when $i=0,1$ and $\beta \le _l \alpha $, where $\le _l$ represents the lexicographic order on compositions.
Let $V$ be a finite-dimensional vector space over $\mathbb{F}_p$. We say that a multilinear form $\alpha \colon V^k \to \mathbb{F}_p$ in $k$ variables is $d$-approximately symmetric if the partition rank of difference $\alpha (x_1, \ldots, x_k) - \alpha (x_{\pi (1)}, \ldots, x_{\pi (k)})$ is at most $d$ for every permutation $\pi \in \textrm{Sym}_k$. In a work concerning the inverse theorem for the Gowers uniformity $\|\!\cdot\! \|_{\mathsf{U}^4}$ norm in the case of low characteristic, Tidor conjectured that any $d$-approximately symmetric multilinear form $\alpha \colon V^k \to \mathbb{F}_p$ differs from a symmetric multilinear form by a multilinear form of partition rank at most $O_{p,k,d}(1)$ and proved this conjecture in the case of trilinear forms. In this paper, somewhat surprisingly, we show that this conjecture is false. In fact, we show that approximately symmetric forms can be quite far from the symmetric ones, by constructing a multilinear form $\alpha \colon \mathbb{F}_2^n \times \mathbb{F}_2^n \times \mathbb{F}_2^n \times \mathbb{F}_2^n \to \mathbb{F}_2$ which is 3-approximately symmetric, while the difference between $\alpha$ and any symmetric multilinear form is of partition rank at least $\Omega (\sqrt [3]{n})$.
Motivated by a new conjecture on the behavior of bricks, we start a systematic study of minimal $\tau $-tilting infinite (min-$\tau $-infinite, for short) algebras. In particular, we treat min-$\tau $-infinite algebras as a modern counterpart of minimal representation-infinite algebras and show some of the fundamental similarities and differences between these families. We then relate our studies to the classical tilting theory and observe that this modern approach can provide fresh impetus to the study of some old problems. We further show that in order to verify the conjecture, it is sufficient to treat those min-$\tau $-infinite algebras where almost all bricks are faithful. Finally, we also prove that minimal extending bricks have open orbits, and consequently obtain a simple proof of the brick analogue of the first Brauer–Thrall conjecture, recently shown by Schroll and Treffinger using some different techniques.