To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A k-permutation family on n vertices is a set-system consisting of the intervals of k permutations of the integers 1 to n. The discrepancy of a set-system is the minimum over all red–blue vertex colourings of the maximum difference between the number of red and blue vertices in any set in the system. In 2011, Newman and Nikolov disproved a conjecture of Beck that the discrepancy of any 3-permutation family is at most a constant independent of n. Here we give a simpler proof that Newman and Nikolov’s sequence of 3-permutation families has discrepancy $\Omega (\log \,n)$. We also exhibit a sequence of 6-permutation families with root-mean-squared discrepancy $\Omega (\sqrt {\log \,n} )$; that is, in any red–blue vertex colouring, the square root of the expected squared difference between the number of red and blue vertices in an interval of the system is $\Omega (\sqrt {\log \,n} )$.
We study and classify proper q-colourings of the ℤd lattice, identifying three regimes where different combinatorial behaviour holds. (1) When $q\le d+1$, there exist frozen colourings, that is, proper q-colourings of ℤd which cannot be modified on any finite subset. (2) We prove a strong list-colouring property which implies that, when $q\ge d+2$, any proper q-colouring of the boundary of a box of side length $n \ge d+2$ can be extended to a proper q-colouring of the entire box. (3) When $q\geq 2d+1$, the latter holds for any $n \ge 1$. Consequently, we classify the space of proper q-colourings of the ℤd lattice by their mixing properties.
Let G be a graph on n vertices and with maximum degree Δ, and let k be an integer. The k-recolouring graph of G is the graph whose vertices are k-colourings of G and where two k-colourings are adjacent if they differ at exactly one vertex. It is well known that the k-recolouring graph is connected for $k\geq \Delta+2$. Feghali, Johnson and Paulusma (J. Graph Theory83 (2016) 340–358) showed that the (Δ + 1)-recolouring graph is composed by a unique connected component of size at least 2 and (possibly many) isolated vertices.
In this paper, we study the proportion of isolated vertices (also called frozen colourings) in the (Δ + 1)-recolouring graph. Our first contribution is to show that if G is connected, the proportion of frozen colourings of G is exponentially smaller in n than the total number of colourings. This motivates the use of the Glauber dynamics to approximate the number of (Δ + 1)-colourings of a graph. In contrast to the conjectured mixing time of O(nlog n) for $k\geq \Delta+2$ colours, we show that the mixing time of the Glauber dynamics for (Δ + 1)-colourings restricted to non-frozen colourings can be Ω(n2). Finally, we prove some results about the existence of graphs with large girth and frozen colourings, and study frozen colourings in random regular graphs.
We introduce a non-increasing tree growth process $((T_n,{\sigma}_n),\, n\ge 1)$, where Tn is a rooted labelled tree on n vertices and σn is a permutation of the vertex labels. The construction of (Tn, σn) from (Tn−1, σn−1) involves rewiring a random (possibly empty) subset of edges in Tn−1 towards the newly added vertex; as a consequence Tn−1 ⊄ Tn with positive probability. The key feature of the process is that the shape of Tn has the same law as that of a random recursive tree, while the degree distribution of any given vertex is not monotone in the process.
We present two applications. First, while couplings between Kingman’s coalescent and random recursive trees were known for any fixed n, this new process provides a non-standard coupling of all finite Kingman’s coalescents. Second, we use the new process and the Chen–Stein method to extend the well-understood properties of degree distribution of random recursive trees to extremal-range cases. Namely, we obtain convergence rates on the number of vertices with degree at least $c\ln n$, c ∈ (1, 2), in trees with n vertices. Further avenues of research are discussed.
Let $\gamma(G)$ and $${\gamma _ \circ }(G)$$ denote the sizes of a smallest dominating set and smallest independent dominating set in a graph G, respectively. One of the first results in probabilistic combinatorics is that if G is an n-vertex graph of minimum degree at least d, then
$$\begin{equation}\gamma(G) \leq \frac{n}{d}(\log d + 1).\end{equation}$$
In this paper the main result is that if G is any n-vertex d-regular graph of girth at least five, then
$$\begin{equation}\gamma_(G) \leq \frac{n}{d}(\log d + c)\end{equation}$$
for some constant c independent of d. This result is sharp in the sense that as $d \rightarrow \infty$, almost all d-regular n-vertex graphs G of girth at least five have
Furthermore, if G is a disjoint union of ${n}/{(2d)}$ complete bipartite graphs $K_{d,d}$, then ${\gamma_\circ}(G) = \frac{n}{2}$. We also prove that there are n-vertex graphs G of minimum degree d and whose maximum degree grows not much faster than d log d such that ${\gamma_\circ}(G) \sim {n}/{2}$ as $d \rightarrow \infty$. Therefore both the girth and regularity conditions are required for the main result.
We consider the graph $\Gamma _{\text {virt}}(G)$ whose vertices are the elements of a finitely generated profinite group G and where two vertices x and y are adjacent if and only if they topologically generate an open subgroup of G. We investigate the connectivity of the graph $\Delta _{\text {virt}}(G)$ obtained from $\Gamma _{\text {virt}}(G)$ by removing its isolated vertices. In particular, we prove that for every positive integer t, there exists a finitely generated prosoluble group G with the property that $\Delta _{\operatorname {\mathrm {virt}}}(G)$ has precisely t connected components. Moreover, we study the graph $\widetilde \Gamma _{\operatorname {\mathrm {virt}}}(G)$, whose vertices are again the elements of G and where two vertices are adjacent if and only if there exists a minimal generating set of G containing them. In this case, we prove that the subgraph $\widetilde \Delta _{\operatorname {\mathrm {virt}}}(G)$ obtained removing the isolated vertices is connected and has diameter at most 3.
A k-uniform tight cycle $C_s^k$ is a hypergraph on s > k vertices with a cyclic ordering such that every k consecutive vertices under this ordering form an edge. The pair (k, s) is admissible if gcd (k, s) = 1 or k / gcd (k,s) is even. We prove that if $s \ge 2{k^2}$ and H is a k-uniform hypergraph with minimum codegree at least (1/2 + o(1))|V(H)|, then every vertex is covered by a copy of $C_s^k$. The bound is asymptotically sharp if (k, s) is admissible. Our main tool allows us to arbitrarily rearrange the order in which a tight path wraps around a complete k-partite k-uniform hypergraph, which may be of independent interest.
For hypergraphs F and H, a perfect F-tiling in H is a spanning collection of vertex-disjoint copies of F. For $k \ge 3$, there are currently only a handful of known F-tiling results when F is k-uniform but not k-partite. If s ≢ 0 mod k, then $C_s^k$ is not k-partite. Here we prove an F-tiling result for a family of non-k-partite k-uniform hypergraphs F. Namely, for $s \ge 5{k^2}$, every k-uniform hypergraph H with minimum codegree at least (1/2 + 1/(2s) + o(1))|V(H)| has a perfect $C_s^k$-tiling. Moreover, the bound is asymptotically sharp if k is even and (k, s) is admissible.
We employ the absorbing-path method in order to prove two results regarding the emergence of tight Hamilton cycles in the so-called two-path or cherry-quasirandom 3-graphs.
Our first result asserts that for any fixed real α > 0, cherry-quasirandom 3-graphs of sufficiently large order n having minimum 2-degree at least α(n – 2) have a tight Hamilton cycle.
Our second result concerns the minimum 1-degree sufficient for such 3-graphs to have a tight Hamilton cycle. Roughly speaking, we prove that for every d, α > 0 satisfying d + α > 1, any sufficiently large n-vertex such 3-graph H of density d and minimum 1-degree at least $\alpha \left({\matrix{{n - 1} \cr 2 \cr } } \right)$ has a tight Hamilton cycle.
For a real constant α, let $\pi _3^\alpha (G)$ be the minimum of twice the number of K2’s plus α times the number of K3’s over all edge decompositions of G into copies of K2 and K3, where Kr denotes the complete graph on r vertices. Let $\pi _3^\alpha (n)$ be the maximum of $\pi _3^\alpha (G)$ over all graphs G with n vertices.
The extremal function $\pi _3^3(n)$ was first studied by Győri and Tuza (Studia Sci. Math. Hungar.22 (1987) 315–320). In recent progress on this problem, Král’, Lidický, Martins and Pehova (Combin. Probab. Comput.28 (2019) 465–472) proved via flag algebras that$\pi _3^3(n) \le (1/2 + o(1)){n^2}$. We extend their result by determining the exact value of $\pi _3^\alpha (n)$ and the set of extremal graphs for all α and sufficiently large n. In particular, we show for α = 3 that Kn and the complete bipartite graph ${K_{\lfloor n/2 \rfloor,\lceil n/2 \rceil }}$ are the only possible extremal examples for large n.
Let r be an integer with 2 ≤ r ≤ 24 and let pr(n) be defined by $\sum _{n=0}^\infty p_r(n) q^n = \prod _{k=1}^\infty (1-q^k)^r$. In this paper, we provide uniform methods for discovering infinite families of congruences and strange congruences for pr(n) by using some identities on pr(n) due to Newman. As applications, we establish many infinite families of congruences and strange congruences for certain partition functions, such as Andrews's smallest parts function, the coefficients of Ramanujan's ϕ function and p-regular partition functions. For example, we prove that for n ≥ 0,
Henle, Mathias, and Woodin proved in [21] that, provided that ${\omega }{\rightarrow }({\omega })^{{\omega }}$ holds in a model M of ZF, then forcing with $([{\omega }]^{{\omega }},{\subseteq }^*)$ over M adds no new sets of ordinals, thus earning the name a “barren” extension. Moreover, under an additional assumption, they proved that this generic extension preserves all strong partition cardinals. This forcing thus produces a model $M[\mathcal {U}]$, where $\mathcal {U}$ is a Ramsey ultrafilter, with many properties of the original model M. This begged the question of how important the Ramseyness of $\mathcal {U}$ is for these results. In this paper, we show that several classes of $\sigma $-closed forcings which generate non-Ramsey ultrafilters have the same properties. Such ultrafilters include Milliken–Taylor ultrafilters, a class of rapid p-points of Laflamme, k-arrow p-points of Baumgartner and Taylor, and extensions to a class of ultrafilters constructed by Dobrinen, Mijares, and Trujillo. Furthermore, the class of Boolean algebras $\mathcal {P}({\omega }^{{\alpha }})/{\mathrm {Fin}}^{\otimes {\alpha }}$, $2\le {\alpha }<{\omega }_1$, forcing non-p-points also produce barren extensions.
We present several results on the connectivity of McKay quivers of finite-dimensional complex representations of finite groups, with no restriction on the faithfulness or self-duality of the representations. We give examples of McKay quivers, as well as quivers that cannot arise as McKay quivers, and discuss a necessary and sufficient condition for two finite groups to share a connected McKay quiver.
We study the scaling limit of a random forest with prescribed degree sequence in the regime that the largest tree consists of all but a vanishing fraction of nodes. We give a description of the limit of the forest consisting of the small trees, by relating a plane forest to a marked cyclic forest and its corresponding skip-free walk.
Bollobás and Nikiforov (J. Combin. Theory Ser. B.97 (2007) 859–865) conjectured the following. If G is a Kr+1-free graph on at least r+1 vertices and m edges, then ${\rm{\lambda }}_1^2(G) + {\rm{\lambda }}_2^2(G) \le (r - 1)/r \cdot 2m$, where λ1 (G)and λ2 (G) are the largest and the second largest eigenvalues of the adjacency matrix A(G), respectively. In this paper we confirm the conjecture in the case r=2, by using tools from doubly stochastic matrix theory, and also characterize all families of extremal graphs. Motivated by classic theorems due to Erdös and Nosal respectively, we prove that every non-bipartite graph of order and size contains a triangle if one of the following is true: (i) ${{\rm{\lambda }}_1}(G) \ge \sqrt {m - 1} $ and $G \ne {C_5} \cup (n - 5){K_1}$, and (ii) ${{\rm{\lambda }}_1}(G) \ge {{\rm{\lambda }}_1}(S({K_{[(n - 1)/2],[(n - 1)/2]}}))$ and $G \ne S({K_{[(n - 1)/2],[(n - 1)/2]}})$, where $S({K_{[(n - 1)/2],[(n - 1)/2]}})$ is obtained from ${K_{[(n - 1)/2],[(n - 1)/2]}}$ by subdividing an edge. Both conditions are best possible. We conclude this paper with some open problems.
Assume that G is a graph with edge ideal $I(G)$ and star packing number $\alpha _2(G)$. We denote the sth symbolic power of $I(G)$ by $I(G)^{(s)}$. It is shown that the inequality $ \operatorname {\mathrm {depth}} S/(I(G)^{(s)})\geq \alpha _2(G)-s+1$ is true for every chordal graph G and every integer $s\geq 1$. Moreover, it is proved that for any graph G, we have $ \operatorname {\mathrm {depth}} S/(I(G)^{(2)})\geq \alpha _2(G)-1$.
In an r-uniform hypergraph on n vertices, a tight Hamilton cycle consists of n edges such that there exists a cyclic ordering of the vertices where the edges correspond to consecutive segments of r vertices. We provide a first deterministic polynomial-time algorithm, which finds a.a.s. tight Hamilton cycles in random r-uniform hypergraphs with edge probability at least C log3n/n.
Our result partially answers a question of Dudek and Frieze, who proved that tight Hamilton cycles exist already for p = ω(1/n) for r = 3 and p = (e + o(1))/n for $r \ge 4$ using a second moment argument. Moreover our algorithm is superior to previous results of Allen, Böttcher, Kohayakawa and Person, and Nenadov and Škorić, in various ways: the algorithm of Allen et al. is a randomized polynomial-time algorithm working for edge probabilities $p \ge {n^{ - 1 + \varepsilon}}$, while the algorithm of Nenadov and Škorić is a randomized quasipolynomial-time algorithm working for edge probabilities $p \ge C\mathop {\log }\nolimits^8 n/n$.
We present a new approach to graph limit theory that unifies and generalizes the two most well-developed directions, namely dense graph limits (even the more general $L^p$ limits) and Benjamini–Schramm limits (even in the stronger local-global setting). We illustrate by examples that this new framework provides a rich limit theory with natural limit objects for graphs of intermediate density. Moreover, it provides a limit theory for bounded operators (called P-operators) of the form $L^\infty (\Omega )\to L^1(\Omega )$ for probability spaces $\Omega $. We introduce a metric to compare P-operators (for example, finite matrices) even if they act on different spaces. We prove a compactness result, which implies that, in appropriate norms, limits of uniformly bounded P-operators can again be represented by P-operators. We show that limits of operators, representing graphs, are self-adjoint, positivity-preserving P-operators called graphops. Graphons, $L^p$ graphons, and graphings (known from graph limit theory) are special examples of graphops. We describe a new point of view on random matrix theory using our operator limit framework.
Motivated by problems in percolation theory, we study the following two-player positional game. Let Λm×n be a rectangular grid-graph with m vertices in each row and n vertices in each column. Two players, Maker and Breaker, play in alternating turns. On each of her turns, Maker claims p (as yet unclaimed) edges of the board Λm×n, while on each of his turns Breaker claims q (as yet unclaimed) edges of the board and destroys them. Maker wins the game if she manages to claim all the edges of a crossing path joining the left-hand side of the board to its right-hand side, otherwise Breaker wins. We call this game the (p, q)-crossing game on Λm×n.
Given m, n ∈ ℕ, for which pairs (p, q) does Maker have a winning strategy for the (p, q)-crossing game on Λm×n? The (1, 1)-case corresponds exactly to the popular game of Bridg-it, which is well understood due to it being a special case of the older Shannon switching game. In this paper we study the general (p, q)-case. Our main result is to establish the following transition.
If p ≥ 2q, then Maker wins the game on arbitrarily long versions of the narrowest board possible, that is, Maker has a winning strategy for the (2q, q)-crossing game on Λm×(q+1) for any m ∈ ℕ.
If p ≤ 2q − 1, then for every width n of the board, Breaker has a winning strategy for the (p, q)-crossing game on Λm×n for all sufficiently large board-lengths m.
Our winning strategies in both cases adapt more generally to other grids and crossing games. In addition we pose many new questions and problems.
We investigate a covering problem in 3-uniform hypergraphs (3-graphs): Given a 3-graph F, what is c1(n, F), the least integer d such that if G is an n-vertex 3-graph with minimum vertex-degree $\delta_1(G)>d$ then every vertex of G is contained in a copy of F in G?
We asymptotically determine c1(n, F) when F is the generalized triangle $K_4^{(3)-}$, and we give close to optimal bounds in the case where F is the tetrahedron $K_4^{(3)}$ (the complete 3-graph on 4 vertices).
This latter problem turns out to be a special instance of the following problem for graphs: Given an n-vertex graph G with $m> n^2/4$ edges, what is the largest t such that some vertex in G must be contained in t triangles? We give upper bound constructions for this problem that we conjecture are asymptotically tight. We prove our conjecture for tripartite graphs, and use flag algebra computations to give some evidence of its truth in the general case.
In this note we study the emergence of Hamiltonian Berge cycles in random r-uniform hypergraphs. For $r\geq 3$ we prove an optimal stopping time result that if edges are sequentially added to an initially empty r-graph, then as soon as the minimum degree is at least 2, the hypergraph with high probability has such a cycle. In particular, this determines the threshold probability for Berge Hamiltonicity of the Erdős–Rényi random r-graph, and we also show that the 2-out random r-graph with high probability has such a cycle. We obtain similar results for weak Berge cycles as well, thus resolving a conjecture of Poole.