To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we show that every non-cycle finite transitive directed graph has a Cuntz–Krieger family whose WOT-closed algebra is $B(\mathcal {H})$. This is accomplished through a new construction that reduces this problem to in-degree 2-regular graphs, which is then treated by applying the periodic Road Colouring Theorem of Béal and Perrin. As a consequence we show that finite disjoint unions of finite transitive directed graphs are exactly those finite graphs which admit self-adjoint free semigroupoid algebras.
Frieze patterns, as introduced by Coxeter in the 1970s, are closely related to cluster algebras without coefficients. A suitable generalization of frieze patterns, linked to cluster algebras with coefficients, has only briefly appeared in an unpublished manuscript by Propp. In this paper, we study these frieze patterns with coefficients systematically and prove various fundamental results, generalizing classic results for frieze patterns. As a consequence, we see how frieze patterns with coefficients can be obtained from classic frieze patterns by cutting out subpolygons from the triangulated polygons associated with classic Conway–Coxeter frieze patterns. We address the question of which frieze patterns with coefficients can be obtained in this way and solve this problem completely for triangles. Finally, we prove a finiteness result for frieze patterns with coefficients by showing that for a given boundary sequence there are only finitely many (nonzero) frieze patterns with coefficients with entries in a subset of the complex numbers without an accumulation point.
There has been substantial interest in estimating the value of a graph parameter, i.e. of a real-valued function defined on the set of finite graphs, by querying a randomly sampled substructure whose size is independent of the size of the input. Graph parameters that may be successfully estimated in this way are said to be testable or estimable, and the sample complexity qz = qz(ε) of an estimable parameter z is the size of a random sample of a graph G required to ensure that the value of z(G) may be estimated within an error of ε with probability at least 2/3. In this paper, for any fixed monotone graph property $\mathcal{P}= \text{Forb}\!(\mathcal{F}),$ we study the sample complexity of estimating a bounded graph parameter z that, for an input graph G, counts the number of spanning subgraphs of G that satisfy$\mathcal{P}$. To improve upon previous upper bounds on the sample complexity, we show that the vertex set of any graph that satisfies a monotone property $\mathcal{P}$ may be partitioned equitably into a constant number of classes in such a way that the cluster graph induced by the partition is not far from satisfying a natural weighted graph generalization of $\mathcal{P}$. Properties for which this holds are said to be recoverable, and the study of recoverable properties may be of independent interest.
A meander is a topological configuration of a line and a simple closed curve in the plane (or a pair of simple closed curves on the 2-sphere) intersecting transversally. Meanders can be traced back to H. Poincaré and naturally appear in various areas of mathematics, theoretical physics and computational biology (in particular, they provide a model of polymer folding). Enumeration of meanders is an important open problem. The number of meanders with $2N$ crossings grows exponentially when $N$ grows, but the long-standing problem on the precise asymptotics is still out of reach.
We show that the situation becomes more tractable if one additionally fixes the topological type (or the total number of minimal arcs) of a meander. Then we are able to derive simple asymptotic formulas for the numbers of meanders as $N$ tends to infinity. We also compute the asymptotic probability of getting a simple closed curve on a sphere by identifying the endpoints of two arc systems (one on each of the two hemispheres) along the common equator.
The new tools we bring to bear are based on interpretation of meanders as square-tiled surfaces with one horizontal and one vertical cylinder. The proofs combine recent results on Masur–Veech volumes of moduli spaces of meromorphic quadratic differentials in genus zero with our new observation that horizontal and vertical separatrix diagrams of integer quadratic differentials are asymptotically uncorrelated. The additional combinatorial constraints we impose in this article yield explicit polynomial asymptotics.
For positive integers $n$ and $k$, let $r_{k}(n)$ denote the number of representations of $n$ as a sum of $k$ squares, where representations with different orders and different signs are counted as distinct. For a given positive integer $m$, by means of some properties of binomial coefficients, we derive some infinite families of congruences for $r_{k}(n)$ modulo $2^{m}$. Furthermore, in view of these arithmetic properties of $r_{k}(n)$, we establish many infinite families of congruences for the overpartition function and the overpartition pair function.
Cluster categories and cluster algebras encode two dimensional structures. For instance, the Auslander–Reiten quiver of a cluster category can be drawn on a surface, and there is a class of cluster algebras determined by surfaces with marked points.
Cluster characters are maps from cluster categories (and more general triangulated categories) to cluster algebras. They have a tropical shadow in the form of so-called tropical friezes, which are maps from cluster categories (and more general triangulated categories) to the integers.
This paper will define higher dimensional tropical friezes. One of the motivations is the higher dimensional cluster categories of Oppermann and Thomas, which encode (d + 1)-dimensional structures for an integer d ⩾ 1. They are (d + 2)-angulated categories, which belong to the subject of higher homological algebra.
We will define higher dimensional tropical friezes as maps from higher cluster categories (and more general (d + 2)-angulated categories) to the integers. Following Palu, we will define a notion of (d + 2)-angulated index, establish some of its properties, and use it to construct higher dimensional tropical friezes.
Suppose that A is a k × d matrix of integers and write $\Re _A:{\mathbb N}\to {\mathbb N}\cup \{ \infty \} $ for the function taking r to the largest N such that there is an r-colouring $\mathcal {C}$ of [N] with $\bigcup _{C \in \mathcal {C}}{C^d}\cap \ker A =\emptyset $. We show that if ℜA(r) < ∞ for all $r\in {\mathbb N}$ then $\mathfrak {R}_A(r) \leqslant \exp (\exp (r^{O_{A}(1)}))$ for all r ⩾ 2. When the kernel of A consists only of Brauer configurations – that is, vectors of the form (y, x, x + y, …, x + (d − 2)y) – the above statement has been proved by Chapman and Prendiville with good bounds on the OA(1) term.
For an integer q ⩾ 2, a graph G is called q-Ramsey for a graph H if every q-colouring of the edges of G contains a monochromatic copy of H. If G is q-Ramsey for H yet no proper subgraph of G has this property, then G is called q-Ramsey-minimal for H. Generalizing a statement by Burr, Nešetřil and Rödl from 1977, we prove that, for q ⩾ 3, if G is a graph that is not q-Ramsey for some graph H, then G is contained as an induced subgraph in an infinite number of q-Ramsey-minimal graphs for H as long as H is 3-connected or isomorphic to the triangle. For such H, the following are some consequences.
For 2 ⩽ r < q, every r-Ramsey-minimal graph for H is contained as an induced subgraph in an infinite number of q-Ramsey-minimal graphs for H.
For every q ⩾ 3, there are q-Ramsey-minimal graphs for H of arbitrarily large maximum degree, genus and chromatic number.
The collection $\{\mathcal M_q(H) \colon H \text{ is 3-connected or } K_3\}$ forms an antichain with respect to the subset relation, where $\mathcal M_q(H)$ denotes the set of all graphs that are q-Ramsey-minimal for H.
We also address the question of which pairs of graphs satisfy $\mathcal M_q(H_1)=\mathcal M_q(H_2)$, in which case H1 and H2 are called q-equivalent. We show that two graphs H1 and H2 are q-equivalent for even q if they are 2-equivalent, and that in general q-equivalence for some q ⩾ 3 does not necessarily imply 2-equivalence. Finally we indicate that for connected graphs this implication may hold: results by Nešetřil and Rödl and by Fox, Grinshpun, Liebenau, Person and Szabó imply that the complete graph is not 2-equivalent to any other connected graph. We prove that this is the case for an arbitrary number of colours.
We introduce a notion of $q$-deformed rational numbers and $q$-deformed continued fractions. A $q$-deformed rational is encoded by a triangulation of a polygon and can be computed recursively. The recursive formula is analogous to the $q$-deformed Pascal identity for the Gaussian binomial coefficients, but the Pascal triangle is replaced by the Farey graph. The coefficients of the polynomials defining the $q$-rational count quiver subrepresentations of the maximal indecomposable representation of the graph dual to the triangulation. Several other properties, such as total positivity properties, $q$-deformation of the Farey graph, matrix presentations and $q$-continuants are given, as well as a relation to the Jones polynomial of rational knots.
The directed preferential attachment model is revisited. A new exact characterization of the limiting in- and out-degree distribution is given by two independent pure birth processes that are observed at a common exponentially distributed time T (thus creating dependence between in- and out-degree). The characterization gives an explicit form for the joint degree distribution, and this confirms previously derived tail probabilities for the two marginal degree distributions. The new characterization is also used to obtain an explicit expression for tail probabilities in which both degrees are large. A new generalized directed preferential attachment model is then defined and analyzed using similar methods. The two extensions, motivated by empirical evidence, are to allow double-directed (i.e. undirected) edges in the network, and to allow the probability of connecting an ingoing (outgoing) edge to a specified node to also depend on the out-degree (in-degree) of that node.
We establish an invariance principle and a large deviation principle for a biased random walk ${\text{RW}}_\lambda$ with $\lambda\in [0,1)$ on $\mathbb{Z}^d$. The scaling limit in the invariance principle is not a d-dimensional Brownian motion. For the large deviation principle, its rate function is different from that of a drifted random walk, as may be expected, though the reflected biased random walk evolves like the drifted random walk in the interior of the first quadrant and almost surely visits coordinate planes finitely many times.
The objective of this study is to examine the asymptotic behavior of Betti numbers of Čech complexes treated as stochastic processes and formed from random points in the d-dimensional Euclidean space ${\mathbb{R}}^d$. We consider the case where the points of the Čech complex are generated by a Poisson process with intensity nf for a probability density f. We look at the cases where the behavior of the connectivity radius of the Čech complex causes simplices of dimension greater than $k+1$ to vanish in probability, the so-called sparse regime, as well when the connectivity radius is of the order of $n^{-1/d}$, the critical regime. We establish limit theorems in the aforementioned regimes: central limit theorems for the sparse and critical regimes, and a Poisson limit theorem for the sparse regime. When the connectivity radius of the Čech complex is $o(n^{-1/d})$, i.e. the sparse regime, we can decompose the limiting processes into a time-changed Brownian motion or a time-changed homogeneous Poisson process respectively. In the critical regime, the limiting process is a centered Gaussian process but has a much more complicated representation, because the Čech complex becomes highly connected with many topological holes of any dimension.
In this paper we consider random trees associated with the genealogy of Crump–Mode–Jagers processes and perform Bernoulli bond-percolation whose parameter depends on the size of the tree. Our purpose is to show the existence of a giant percolation cluster for appropriate regimes as the size grows. We stress that the family trees of Crump–Mode–Jagers processes include random recursive trees, preferential attachment trees, binary search trees for which this question has been answered by Bertoin [7], as well as (more general) m-ary search trees, fragmentation trees, and median-of-($2\ell+1$) binary search trees, to name a few, where to our knowledge percolation has not yet been studied.
We consider a simple preferential attachment graph process, which begins with a finite graph and in which a new (t + 1)st vertex is added at each subsequent time step t that is connected to each previous vertex u ≤ t with probability du(t)/t, where du(t) is the degree of u at time t. We analyse the graph obtained as the infinite limit of this process, and we show that, as long as the initial finite graph is neither edgeless nor complete, with probability 1 the outcome will be a copy of the Rado graph augmented with a finite number of either isolated or universal vertices.
We give an example of a long range Bernoulli percolation process on a group non-quasi-isometric with ℤ, in which clusters are almost surely finite for all values of the parameter. This random graph admits diverse equivalent definitions, and we study their ramifications. We also study its expected size and point out certain phase transitions.
Let $X$ be a nonempty set and ${\mathcal{P}}(X)$ the power set of $X$. The aim of this paper is to identify the unital subrings of ${\mathcal{P}}(X)$ and to compute its cardinality when it is finite. It is proved that any topology $\unicode[STIX]{x1D70F}$ on $X$ such that $\unicode[STIX]{x1D70F}=\unicode[STIX]{x1D70F}^{c}$, where $\unicode[STIX]{x1D70F}^{c}=\{U^{c}\mid U\in \unicode[STIX]{x1D70F}\}$, is a unital subring of ${\mathcal{P}}(X)$. It is also shown that $X$ is finite if and only if any unital subring of ${\mathcal{P}}(X)$ is a topology $\unicode[STIX]{x1D70F}$ on $X$ such that $\unicode[STIX]{x1D70F}=\unicode[STIX]{x1D70F}^{c}$ if and only if the set of unital subrings of ${\mathcal{P}}(X)$ is finite. As a consequence, if $X$ is finite with cardinality $n\geq 2$, then the number of unital subrings of ${\mathcal{P}}(X)$ is equal to the $n$th Bell number and the supremum of the lengths of chains of unital subalgebras of ${\mathcal{P}}(X)$ is equal to $n-1$.
Andrews [‘Binary and semi-Fibonacci partitions’, J. Ramanujan Soc. Math. Math. Sci.7(1) (2019), 1–6] recently proved a new identity between the cardinalities of the set of semi-Fibonacci partitions and the set of partitions into powers of 2 with all parts appearing an odd number of times. We extend the identity to the set of semi-$m$-Fibonacci partitions of $n$ and the set of partitions of $n$ into powers of $m$ in which all parts appear with multiplicity not divisible by $m$. We also give a new characterisation of semi-$m$-Fibonacci partitions and some congruences satisfied by the associated number sequence.
The theta graph ${\Theta _{\ell ,t}}$ consists of two vertices joined by t vertex-disjoint paths, each of length $\ell $. For fixed odd $\ell $ and large t, we show that the largest graph not containing ${\Theta _{\ell ,t}}$ has at most ${c_\ell }{t^{1 - 1/\ell }}{n^{1 + 1/\ell }}$ edges and that this is tight apart from the value of ${c_\ell }$.
In this paper, we investigate $\unicode[STIX]{x1D70B}(m,n)$, the number of partitions of the bipartite number$(m,n)$ into steadily decreasing parts, introduced by Carlitz [‘A problem in partitions’, Duke Math. J.30 (1963), 203–213]. We give a relation between $\unicode[STIX]{x1D70B}(m,n)$ and the crank statistic $M(m,n)$ for integer partitions. Using this relation, we establish some uniform asymptotic formulas for $\unicode[STIX]{x1D70B}(m,n)$.
Let c denote the largest constant such that every C6-free graph G contains a bipartite and C4-free subgraph having a fraction c of edges of G. Győri, Kensell and Tompkins showed that 3/8 ⩽ c ⩽ 2/5. We prove that c = 38. More generally, we show that for any ε > 0, and any integer k ⩾ 2, there is a C2k-free graph $G'$ which does not contain a bipartite subgraph of girth greater than 2k with more than a fraction
One of our proofs uses the following statement, which we prove using probabilistic ideas, generalizing a theorem of Erdős. For any ε > 0, and any integers a, b, k ⩾ 2, there exists an a-uniform hypergraph H of girth greater than k which does not contain any b-colourable subhypergraph with more than a fraction
of the hyperedges of H. We also prove further generalizations of this theorem.
In addition, we give a new and very short proof of a result of Kühn and Osthus, which states that every bipartite C2k-free graph G contains a C4-free subgraph with at least a fraction 1/(k−1) of the edges of G. We also answer a question of Kühn and Osthus about C2k-free graphs obtained by pasting together C2l’s (with k >l ⩾ 3).