To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this work, we use rigorous probabilistic methods to study the asymptotic degree distribution, clustering coefficient, and diameter of geographical attachment networks. As a type of small-world network model, these networks were first proposed in the physical literature, where they were analyzed only with heuristic arguments and computational simulations.
In an earlier paper, the present authors (2015) introduced the altermatic number of graphs and used Tucker’s lemma, an equivalent combinatorial version of the Borsuk–Ulam theorem, to prove that the altermatic number is a lower bound for chromatic number. A matching Kneser graph is a graph whose vertex set consists of all matchings of a specified size in a host graph and two vertices are adjacent if their corresponding matchings are edge-disjoint. Some well-known families of graphs such as Kneser graphs, Schrijver graphs and permutation graphs can be represented by matching Kneser graphs. In this paper, unifying and generalizing some earlier works by Lovász (1978) and Schrijver (1978), we determine the chromatic number of a large family of matching Kneser graphs by specifying their altermatic number. In particular, we determine the chromatic number of these matching Kneser graphs in terms of the generalized Turán number of matchings.
We introduce two new bases of the ring of polynomials and study their relations to known bases. The first basis is the quasi-Lascoux basis, which is simultaneously both a $K$-theoretic deformation of the quasi-key basis and also a lift of the $K$-analogue of the quasi-Schur basis from quasi-symmetric polynomials to general polynomials. We give positive expansions of this quasi-Lascoux basis into the glide and Lascoux atom bases, as well as a positive expansion of the Lascoux basis into the quasi-Lascoux basis. As a special case, these expansions give the first proof that the $K$-analogues of quasi-Schur polynomials expand positively in multifundamental quasi-symmetric polynomials of T. Lam and P. Pylyavskyy.
The second new basis is the kaon basis, a $K$-theoretic deformation of the fundamental particle basis. We give positive expansions of the glide and Lascoux atom bases into this kaon basis.
Throughout, we explore how the relationships among these $K$-analogues mirror the relationships among their cohomological counterparts. We make several “alternating sum” conjectures that are suggestive of Euler characteristic calculations.
The no restart random walk (NRRW) is a random network growth model driven by a random walk that builds the graph while moving on it, adding and connecting a new leaf node to the current position of the walker every s steps. We show a fundamental dichotomy in NRRW with respect to the parity of s: for ${s}=1$ we prove that the random walk is transient and non-leaf nodes have degrees bounded above by an exponential distribution; for s even we prove that the random walk is recurrent and non-leaf nodes have degrees bounded below by a power law distribution. These theoretical findings highlight and confirm the diverse and rich behaviour of NRRW observed empirically.
We study the average nearest-neighbour degree a(k) of vertices with degree k. In many real-world networks with power-law degree distribution, a(k) falls off with k, a property ascribed to the constraint that any two vertices are connected by at most one edge. We show that a(k) indeed decays with k in three simple random graph models with power-law degrees: the erased configuration model, the rank-1 inhomogeneous random graph, and the hyperbolic random graph. We find that in the large-network limit for all three null models, a(k) starts to decay beyond $n^{(\tau-2)/(\tau-1)}$ and then settles on a power law $a(k)\sim k^{\tau-3}$, with $\tau$ the degree exponent.
We consider subgraph counts in general preferential attachment models with power-law degree exponent $\tau > 2$. For all subgraphs H, we find the scaling of the expected number of subgraphs as a power of the number of vertices. We prove our results on the expected number of subgraphs by defining an optimization problem that finds the optimal subgraph structure in terms of the indices of the vertices that together span it and by using the representation of the preferential attachment model as a Pólya urn model.
Archdeacon and Grable (1995) proved that the genus of the random graph $G\in {\mathcal{G}}_{n,p}$ is almost surely close to $pn^{2}/12$ if $p=p(n)\geqslant 3(\ln n)^{2}n^{-1/2}$. In this paper we prove an analogous result for random bipartite graphs in ${\mathcal{G}}_{n_{1},n_{2},p}$. If $n_{1}\geqslant n_{2}\gg 1$, phase transitions occur for every positive integer $i$ when $p=\unicode[STIX]{x1D6E9}((n_{1}n_{2})^{-i/(2i+1)})$. A different behaviour is exhibited when one of the bipartite parts has constant size, i.e., $n_{1}\gg 1$ and $n_{2}$ is a constant. In that case, phase transitions occur when $p=\unicode[STIX]{x1D6E9}(n_{1}^{-1/2})$ and when $p=\unicode[STIX]{x1D6E9}(n_{1}^{-1/3})$.
We show that the transition matrix from the polytabloid basis to the web basis of the irreducible $\mathfrak{S}_{2n}$-representation of shape $(n,n)$ has nonnegative integer entries. This proves a conjecture of Russell and Tymoczko [Int. Math. Res. Not., 2019(5) (2019), 1479–1502].
We present an example of an isometric subspace of a metric space that has a greater metric dimension. We also show that the metric spaces of vector groups over the integers, defined by the generating set of unit vectors, cannot be resolved by a finite set. Bisectors in the spaces of vector groups, defined by the generating set consisting of unit vectors, are completely determined.
An elastic graph is a graph with an elasticity associated to each edge. It may be viewed as a network made out of ideal rubber bands. If the rubber bands are stretched on a target space there is an elastic energy. We characterize when a homotopy class of maps from one elastic graph to another is loosening, that is, decreases this elastic energy for all possible targets. This fits into a more general framework of energies for maps between graphs.
Quasi-Sturmian words, which are infinite words with factor complexity eventually $n+c$ share many properties with Sturmian words. In this article, we study the quasi-Sturmian colorings on regular trees. There are two different types, bounded and unbounded, of quasi-Sturmian colorings. We obtain an induction algorithm similar to Sturmian colorings. We distinguish them by the recurrence function.
An automorphism of a graph product of groups is conjugating if it sends each factor to a conjugate of a factor (possibly different). In this article, we determine precisely when the group of conjugating automorphisms of a graph product satisfies Kazhdan’s property (T) and when it satisfies some vastness properties including SQ-universality.
We report the results of a computer enumeration that found that there are 3155 perfect 1-factorisations (P1Fs) of the complete graph $K_{16}$. Of these, 89 have a nontrivial automorphism group (correcting an earlier claim of 88 by Meszka and Rosa [‘Perfect 1-factorisations of $K_{16}$ with nontrivial automorphism group’, J. Combin. Math. Combin. Comput.47 (2003), 97–111]). We also (i) describe a new invariant which distinguishes between the P1Fs of $K_{16}$, (ii) observe that the new P1Fs produce no atomic Latin squares of order 15 and (iii) record P1Fs for a number of large orders that exceed prime powers by one.
Let G(n,M) be a uniform random graph with n vertices and M edges. Let ${\wp_{n,m}}$ be the maximum block size of G(n,M), that is, the maximum size of its maximal 2-connected induced subgraphs. We determine the expectation of ${\wp_{n,m}}$ near the critical point M = n/2. When n − 2M ≫ n2/3, we find a constant c1 such that
This study relies on the symbolic method and analytic tools from generating function theory, which enable us to describe the evolution of $n^{-1/3}\,\E{\left({\wp_{n,{{(n/2)}({1+\lambda n^{-1/3}})}}}\right)}$ as a function of λ.
Given graphs G and H, a family of vertex-disjoint copies of H in G is called an H-tiling. Conlon, Gowers, Samotij and Schacht showed that for a given graph H and a constant γ>0, there exists C>0 such that if $p \ge C{n^{ - 1/{m_2}(H)}}$, then asymptotically almost surely every spanning subgraph G of the random graph 𝒢(n, p) with minimum degree at least
contains an H-tiling that covers all but at most γn vertices. Here, χcr(H) denotes the critical chromatic number, a parameter introduced by Komlós, and m2(H) is the 2-density of H. We show that this theorem can be bootstrapped to obtain an H-tiling covering all but at most $\gamma {(C/p)^{{m_2}(H)}}$ vertices, which is strictly smaller when $p \ge C{n^{ - 1/{m_2}(H)}}$. In the case where H = K3, this answers the question of Balogh, Lee and Samotij. Furthermore, for an arbitrary graph H we give an upper bound on p for which some leftover is unavoidable and a bound on the size of a largest H -tiling for p below this value.
We prove a new linear relation for multiple zeta values. This is a natural generalisation of the restricted sum formula proved by Eie, Liaw and Ong. We also present an analogous result for finite multiple zeta values.
We generalise a result of Chern [‘A curious identity and its applications to partitions with bounded part differences’, New Zealand J. Math.47 (2017), 23–26] on distinct partitions with bounded difference between largest and smallest parts. The generalisation is proved both analytically and bijectively.
We study generating functions of ordinary and plane partitions coloured by the action of a finite subgroup of the corresponding special linear group. After reviewing known results for the case of ordinary partitions, we formulate a conjecture concerning a basic factorisation property of the generating function of coloured plane partitions that can be thought of as an orbifold analogue of a conjecture of Maulik et al., now a theorem, in three-dimensional Donaldson–Thomas theory. We study natural quantisations of the generating functions arising from geometry, discuss a quantised version of our conjecture, and prove a positivity result for the quantised coloured plane partition function under a geometric assumption.
This note contains a (short) proof of the following generalisation of the Friedman–Mineyev theorem (earlier known as the Hanna Neumann conjecture): if $A$ and $B$ are nontrivial free subgroups of a virtually free group containing a free subgroup of index $n$, then $\text{rank}(A\cap B)-1\leq n\cdot (\text{rank}(A)-1)\cdot (\text{rank}(B)-1)$. In addition, we obtain a virtually-free-product analogue of this result.