To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that a dense subset of a sufficiently large group multiplication table contains either a large part of the addition table of the integers modulo some k, or the entire multiplication table of a certain large abelian group, as a subgrid. As a consequence, we show that triples systems coming from a finite group contain configurations with t triples spanning $ O(\sqrt t )$ vertices, which is the best possible up to the implied constant. We confirm that for all t we can find a collection of t triples spanning at most t + 3 vertices, resolving the Brown–Erdős–Sós conjecture in this context. The proof applies well-known arithmetic results including the multidimensional versions of Szemerédi’s theorem and the density Hales–Jewett theorem.
This result was discovered simultaneously and independently by Nenadov, Sudakov and Tyomkyn [5], and a weaker result avoiding the arithmetic machinery was obtained independently by Wong [11].
We give a complete description of a basis of the extension spaces between indecomposable string and quasi-simple band modules in the module category of a gentle algebra.
In this paper, we study how to distinguish the embedded topology of a smooth quartic and its bitangent lines. In order to do this, we introduce the concept of two-graphs and switching classes from graph theory. This new method improves previous results about a quartic and three bitangent lines considered by E. Artal Bartolo and J. Vallès, four bitangent lines considered by the authors and H. Tokunaga, and enables us to distinguish the embedded topology of a smooth quartic and five or more bitangent lines. As an application, we obtain a new Zariski 5-tuple and a Zariski 9-tuple for arrangements consisting of a smooth quartic and five of its bitangent lines and six of its bitangent lines, respectively.
Recently, Brietzke, Silva and Sellers [‘Congruences related to an eighth order mock theta function of Gordon and McIntosh’, J. Math. Anal. Appl.479 (2019), 62–89] studied the number $v_{0}(n)$ of overpartitions of $n$ into odd parts without gaps between the nonoverlined parts, whose generating function is related to the mock theta function $V_{0}(q)$ of order 8. In this paper we first present a short proof of the 3-dissection for the generating function of $v_{0}(2n)$. Then we establish three congruences for $v_{0}(n)$ along certain progressions which are subsequences of the integers $4n+3$.
We prove that the class of reflexive asymptotic-$c_{0}$ Banach spaces is coarsely rigid, meaning that if a Banach space $X$ coarsely embeds into a reflexive asymptotic-$c_{0}$ space $Y$, then $X$ is also reflexive and asymptotic-$c_{0}$. In order to achieve this result, we provide a purely metric characterization of this class of Banach spaces. This metric characterization takes the form of a concentration inequality for Lipschitz maps on the Hamming graphs, which is rigid under coarse embeddings. Using an example of a quasi-reflexive asymptotic-$c_{0}$ space, we show that this concentration inequality is not equivalent to the non-equi-coarse embeddability of the Hamming graphs.
Let $\unicode[STIX]{x1D707}(m,n)$ (respectively, $\unicode[STIX]{x1D702}(m,n)$) denote the number of odd-balanced unimodal sequences of size $2n$ and rank $m$ with even parts congruent to $2\!\!\hspace{0.6em}{\rm mod}\hspace{0.2em}4$ (respectively, $0\!\!\hspace{0.6em}{\rm mod}\hspace{0.2em}4$) and odd parts at most half the peak. We prove that two-variable generating functions for $\unicode[STIX]{x1D707}(m,n)$ and $\unicode[STIX]{x1D702}(m,n)$ are simultaneously quantum Jacobi forms and mock Jacobi forms. These odd-balanced unimodal rank generating functions are also duals to partial theta functions originally studied by Ramanujan. Our results also show that there is a single $C^{\infty }$ function in $\mathbb{R}\times \mathbb{R}$ to which the errors to modularity of these two different functions extend. We also exploit the quantum Jacobi properties of these generating functions to show, when viewed as functions of the two variables $w$ and $q$, how they can be expressed as the same simple Laurent polynomial when evaluated at pairs of roots of unity. Finally, we make a conjecture which fully characterizes the parity of the number of odd-balanced unimodal sequences of size $2n$ with even parts congruent to $0\!\!\hspace{0.6em}{\rm mod}\hspace{0.2em}4$ and odd parts at most half the peak.
Qi and Chapman [‘Two closed forms for the Bernoulli polynomials’, J. Number Theory159 (2016), 89–100] gave a closed form expression for the Bernoulli polynomials as polynomials with coefficients involving Stirling numbers of the second kind. We extend the formula to the degenerate Bernoulli polynomials, replacing the Stirling numbers by degenerate Stirling numbers of the second kind.
The field of descriptive combinatorics investigates to what extent classical combinatorial results and techniques can be made topologically or measure-theoretically well behaved. This paper examines a class of coloring problems induced by actions of countable groups on Polish spaces, with the requirement that the desired coloring be Baire measurable. We show that the set of all such coloring problems that admit a Baire measurable solution for a particular free action $\unicode[STIX]{x1D6FC}$ is complete analytic (apart from the trivial situation when the orbit equivalence relation induced by $\unicode[STIX]{x1D6FC}$ is smooth on a comeager set); this result confirms the ‘hardness’ of finding a topologically well-behaved coloring. When $\unicode[STIX]{x1D6FC}$ is the shift action, we characterize the class of problems for which $\unicode[STIX]{x1D6FC}$ has a Baire measurable coloring in purely combinatorial terms; it turns out that closely related concepts have already been studied in graph theory with no relation to descriptive set theory. We remark that our framework permits a wholly dynamical interpretation (with colorings corresponding to equivariant maps to a given subshift), so this article can also be viewed as a contribution to generic dynamics.
Let $\overline{t}(n)$ be the number of overpartitions in which (i) the difference between successive parts may be odd only if the larger part is overlined and (ii) if the smallest part is odd then it is overlined. Ramanujan-type congruences for $\overline{t}(n)$ modulo small powers of $2$ and $3$ have been established. We present two infinite families of congruences modulo $5$ and $27$ for $\overline{t}(n)$, the first of which generalises a recent result of Chern and Hao [‘Congruences for two restricted overpartitions’, Proc. Math. Sci.129 (2019), Article 31].
We construct an $S_{3}$-symmetric probability distribution on $\{(a,b,c)\in \mathbb{Z}_{{\geqslant}0}^{3}\,:\,a+b+c=n\}$ such that its marginal achieves the maximum entropy among all probability distributions on $\{0,1,\ldots ,n\}$ with mean $n/3$. Existence of such a distribution verifies a conjecture of Kleinberg et al. [‘The growth rate of tri-colored sum-free sets’, Discrete Anal. (2018), Paper No. 12, arXiv:1607.00047v1], which is motivated by the study of sum-free sets.
Let $M$ be a regular matroid. The Jacobian group $\text{Jac}(M)$ of $M$ is a finite abelian group whose cardinality is equal to the number of bases of $M$. This group generalizes the definition of the Jacobian group (also known as the critical group or sandpile group) $\operatorname{Jac}(G)$ of a graph $G$ (in which case bases of the corresponding regular matroid are spanning trees of $G$). There are many explicit combinatorial bijections in the literature between the Jacobian group of a graph $\text{Jac}(G)$ and spanning trees. However, most of the known bijections use vertices of $G$ in some essential way and are inherently ‘nonmatroidal’. In this paper, we construct a family of explicit and easy-to-describe bijections between the Jacobian group of a regular matroid $M$ and bases of $M$, many instances of which are new even in the case of graphs. We first describe our family of bijections in a purely combinatorial way in terms of orientations; more specifically, we prove that the Jacobian group of $M$ admits a canonical simply transitive action on the set ${\mathcal{G}}(M)$ of circuit–cocircuit reversal classes of $M$, and then define a family of combinatorial bijections $\unicode[STIX]{x1D6FD}_{\unicode[STIX]{x1D70E},\unicode[STIX]{x1D70E}^{\ast }}$ between ${\mathcal{G}}(M)$ and bases of $M$. (Here $\unicode[STIX]{x1D70E}$ (respectively $\unicode[STIX]{x1D70E}^{\ast }$) is an acyclic signature of the set of circuits (respectively cocircuits) of $M$.) We then give a geometric interpretation of each such map $\unicode[STIX]{x1D6FD}=\unicode[STIX]{x1D6FD}_{\unicode[STIX]{x1D70E},\unicode[STIX]{x1D70E}^{\ast }}$ in terms of zonotopal subdivisions which is used to verify that $\unicode[STIX]{x1D6FD}$ is indeed a bijection. Finally, we give a combinatorial interpretation of lattice points in the zonotope $Z$; by passing to dilations we obtain a new derivation of Stanley’s formula linking the Ehrhart polynomial of $Z$ to the Tutte polynomial of $M$.
Random constraint satisfaction problems play an important role in computer science and combinatorics. For example, they provide challenging benchmark examples for algorithms, and they have been harnessed in probabilistic constructions of combinatorial structures with peculiar features. In an important contribution (Krzakala et al. 2007, Proc. Nat. Acad. Sci.), physicists made several predictions on the precise location and nature of phase transitions in random constraint satisfaction problems. Specifically, they predicted that their satisfiability thresholds are quite generally preceded by several other thresholds that have a substantial impact both combinatorially and computationally. These include the condensation phase transition, where long-range correlations between variables emerge, and the reconstruction threshold. In this paper we prove these physics predictions for a broad class of random constraint satisfaction problems. Additionally, we obtain contiguity results that have implications for Bayesian inference tasks, a subject that has received a great deal of interest recently (e.g. Banks et al. 2016, Proc. 29th COLT).
Following ideas that go back to Cannon, we show the rationality of various generating functions of growth sequences counting embeddings of convex subgraphs in locally-finite, vertex-transitive graphs with the (relative) falsification by fellow traveler property (fftp). In particular, we recover results of Cannon, of Epstein, Iano–Fletcher and Zwick, and of Calegari and Fujiwara. One of our applications concerns Schreier coset graphs of hyperbolic groups relative to quasi-convex subgroups, we show that these graphs have rational growth, the falsification by fellow traveler property, and the existence of a lower bound for the growth rate independent of the finite generating set and the infinite index quasi-convex subgroup.
The maximum size of an r-uniform hypergraph without a Berge cycle of length at least k has been determined for all k ≥ r + 3 by Füredi, Kostochka and Luo and for k < r (and k = r, asymptotically) by Kostochka and Luo. In this paper we settle the remaining cases: k = r + 1 and k = r + 2, proving a conjecture of Füredi, Kostochka and Luo.
An equitable colouring of a graph G is a vertex colouring where no two adjacent vertices are coloured the same and, additionally, the colour class sizes differ by at most 1. The equitable chromatic number χ=(G) is the minimum number of colours required for this. We study the equitable chromatic number of the dense random graph ${\mathcal{G}(n,m)}$ where $m = \left\lfloor {p\left( \matrix{n \cr 2 \cr}\right)} \right\rfloor $ and 0 < p < 0.86 is constant. It is a well-known question of Bollobás [3] whether for p = 1/2 there is a function f(n) → ∞ such that, for any sequence of intervals of length f(n), the normal chromatic number of ${\mathcal{G}(n,m)}$ lies outside the intervals with probability at least 1/2 if n is large enough. Bollobás proposes that this is likely to hold for f(n) = log n. We show that for the equitable chromatic number, the answer to the analogous question is negative. In fact, there is a subsequence ${({n_j})_j}_{ \in {\mathbb {N}}}$ of the integers where $\chi_=({\mathcal{G}(n_j,m_j)})$ is concentrated on exactly one explicitly known value. This constitutes surprisingly narrow concentration since in this range the equitable chromatic number, like the normal chromatic number, is rather large in absolute value, namely asymptotically equal to n/(2logbn) where b = 1/(1 − p).
For a finite group $G$, let $\unicode[STIX]{x1D6E5}(G)$ denote the character graph built on the set of degrees of the irreducible complex characters of $G$. In this paper, we obtain a necessary and sufficient condition which guarantees that the complement of the character graph $\unicode[STIX]{x1D6E5}(G)$ of a finite group $G$ is a nonbipartite Hamiltonian graph.
The separation dimension of a graph G is the minimum positive integer d for which there is an embedding of G into ℝd, such that every pair of disjoint edges are separated by some axis-parallel hyperplane. We prove a conjecture of Alon et al. [SIAM J. Discrete Math. 2015] by showing that every graph with maximum degree Δ has separation dimension less than 20Δ, which is best possible up to a constant factor. We also prove that graphs with separation dimension 3 have bounded average degree and bounded chromatic number, partially resolving an open problem by Alon et al. [J. Graph Theory 2018].
We show that for all $m,k,r\in \mathbb{N}$, there is an $n\in \mathbb{N}$ such that whenever $L$ is a Latin square of order $m$ and the Cartesian product $L^{n}$ of $n$ copies of $L$ is $r$-coloured, there is a monochrome Latin subsquare of $L^{n}$, isotopic to $L^{k}$. In particular, for every prime $p$ and for all $k,r\in \mathbb{N}$, there is an $n\in \mathbb{N}$ such that whenever the multiplication table $L({\mathbb{Z}_{p}}^{n})$ of the group ${\mathbb{Z}_{p}}^{n}$ is $r$-coloured, there is a monochrome Latin subsquare of order $p^{k}$. On the other hand, we show that for every group $G$ of order $\leq 15$, there is a 2-colouring of $L(G)$ without a nontrivial monochrome Latin subsquare.
We give the crossing number of the join product $W_{4}+D_{n}$, where $W_{4}$ is the wheel on five vertices and $D_{n}$ consists of $n$ isolated vertices. The proof is based on calculating the minimum number of crossings between two different subgraphs from the set of subgraphs which do not cross the edges of the graph $W_{4}$ and from the set of subgraphs which cross the edges of $W_{4}$ exactly once.
We investigate the arithmetic properties of the second-order mock theta function $B(q)$ and establish two identities for the coefficients of this function along arithmetic progressions. As applications, we prove several congruences for these coefficients.