We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It is well known that the edge ideal $I(G)$ of a simple graph G has linear quotients if and only if $G^c$ is chordal. We investigate when the property of having linear quotients is inherited by homological shift ideals of an edge ideal. We will see that adding a cluster to the graph $G^c$ when $I(G)$ has homological linear quotients results in a graph with the same property. In particular, $I(G)$ has homological linear quotients when $G^c$ is a block graph. We also show that adding pinnacles to trees preserves the property of having homological linear quotients for the edge ideal of their complements. Furthermore, $I(G)$ has homological linear quotients for every graph G such that $G^c$ is a $\lambda $-minimal chordal graph.
Valuation rings and perfectoid rings are examples of (usually non-Noetherian) rings that behave in some sense like regular rings. We give and study an extension of the concept of regular local rings to non-Noetherian rings so that it includes valuation and perfectoid rings and it is related to Grothendieck’s definition of formal smoothness as in the Noetherian case. For that, we have to take into account the topologies. We prove a descent theorem for regularity along flat homomorphisms (in fact for homomorphisms of finite flat dimension), extending some known results from the Noetherian to the non-Noetherian case, as well as generalizing some recent results in the non-Noetherian case, such as the descent of regularity from perfectoid rings by B. Bhatt, S. Iyengar and L. Ma.
This paper extends the results of Boij, Eisenbud, Erman, Schreyer and Söderberg on the structure of Betti cones of finitely generated graded modules and finite free complexes over polynomial rings, to all finitely generated graded rings admitting linear Noether normalizations. The key new input is the existence of lim Ulrich sequences of graded modules over such rings.
The sheaf-function correspondence identifies the group of constructible functions on a real analytic manifold M with the Grothendieck group of constructible sheaves on M. When M is a finite dimensional real vector space, Kashiwara-Schapira have recently introduced the convolution distance between sheaves of $\mathbf {k}$-vector spaces on M. In this paper, we characterize distances on the group of constructible functions on a real finite dimensional vector space that can be controlled by the convolution distance through the sheaf-function correspondence. Our main result asserts that such distances are almost trivial: they vanish as soon as two constructible functions have the same Euler integral. We formulate consequences of our result for Topological Data Analysis: there cannot exist nontrivial additive invariants of persistence modules that are continuous for the interleaving distance.
Let $\mathfrak{p}$ be a prime ideal in a commutative noetherian ring R and denote by $k(\mathfrak{p})$ the residue field of the local ring $R_\mathfrak{p}$. We prove that if an R-module M satisfies $\operatorname{Ext}_R^{n}(k(\mathfrak{p}),M)=0$ for some $n\geqslant\dim R$, then $\operatorname{Ext}_R^i(k(\mathfrak{p}),M)=0$ holds for all $i \geqslant n$. This improves a result of Christensen, Iyengar and Marley by lowering the bound on n. We also improve existing results on Tor-rigidity. This progress is driven by the existence of minimal semi-flat-cotorsion replacements in the derived category as recently proved by Nakamura and Thompson.
In this paper, we are concerned with certain invariants of modules, called reducing invariants, which have been recently introduced and studied by Araya–Celikbas and Araya–Takahashi. We raise the question whether the residue field of each commutative Noetherian local ring has finite reducing projective dimension and obtain an affirmative answer for the question for a large class of local rings. Furthermore, we construct new examples of modules of infinite projective dimension that have finite reducing projective dimension and study several fundamental properties of reducing dimensions, especially properties under local homomorphisms of local rings.
Let $({\cal{A}},{\cal{E}})$ be an exact category. We establish basic results that allow one to identify sub(bi)functors of ${\operatorname{Ext}}_{\cal{E}}(-,-)$ using additivity of numerical functions and restriction to subcategories. We also study a small number of these new functors over commutative local rings in detail and find a range of applications from detecting regularity to understanding Ulrich modules.
In this article, we prove that a complete Noetherian local domain of mixed characteristic $p>0$ with perfect residue field has an integral extension that is an integrally closed, almost Cohen–Macaulay domain such that the Frobenius map is surjective modulo p. This result is seen as a mixed characteristic analog of the fact that the perfect closure of a complete local domain in positive characteristic is almost Cohen–Macaulay. To this aim, we carry out a detailed study of decompletion of perfectoid rings and establish the Witt-perfect (decompleted) version of André’s perfectoid Abhyankar’s lemma and Riemann’s extension theorem.
Consider a reductive linear algebraic group G acting linearly on a polynomial ring S over an infinite field; key examples are the general linear group, the symplectic group, the orthogonal group, and the special linear group, with the classical representations as in Weyl’s book: For the general linear group, consider a direct sum of copies of the standard representation and copies of the dual; in the other cases, take copies of the standard representation. The invariant rings in the respective cases are determinantal rings, rings defined by Pfaffians of alternating matrices, symmetric determinantal rings and the Plücker coordinate rings of Grassmannians; these are the classical invariant rings of the title, with $S^G\subseteq S$ being the natural embedding.
Over a field of characteristic zero, a reductive group is linearly reductive, and it follows that the invariant ring $S^G$ is a pure subring of S, equivalently, $S^G$ is a direct summand of S as an $S^G$-module. Over fields of positive characteristic, reductive groups are typically no longer linearly reductive. We determine, in the positive characteristic case, precisely when the inclusion $S^G\subseteq S$ is pure. It turns out that if $S^G\subseteq S$ is pure, then either the invariant ring $S^G$ is regular or the group G is linearly reductive.
For a finitely dominated Poincaré duality space $M$, we show how the first author's total obstruction $\mu _M$ to the existence of a Poincaré embedding of the diagonal map $M \to M \times M$ in [17] relates to the Reidemeister trace of the identity map of $M$. We then apply this relationship to show that $\mu _M$ vanishes when suitable conditions on the fundamental group of $M$ are satisfied.
This paper is devoted to the study of generalized tilting theory of functor categories in different levels. First, we extend Miyashita’s proof (Math Z 193:113–146,1986) of the generalized Brenner–Butler theorem to arbitrary functor categories $\mathop{\textrm{Mod}}\nolimits\!(\mathcal{C})$ with $\mathcal{C}$ an annuli variety. Second, a hereditary and complete cotorsion pair generated by a generalized tilting subcategory $\mathcal{T}$ of $\mathop{\textrm{Mod}}\nolimits \!(\mathcal{C})$ is constructed. Some applications of these two results include the equivalence of Grothendieck groups $K_0(\mathcal{C})$ and $K_0(\mathcal{T})$, the existences of a new abelian model structure on the category of complexes $\mathop{\textrm{C}}\nolimits \!(\!\mathop{\textrm{Mod}}\nolimits\!(\mathcal{C}))$, and a t-structure on the derived category $\mathop{\textrm{D}}\nolimits \!(\!\mathop{\textrm{Mod}}\nolimits \!(\mathcal{C}))$.
We answer an open problem posed by Iarrobino, Hilbert scheme of points: Overview of last ten years. Proceedings of Symposia in Pure Mathematics, 46 (American Mathematical Society, Providence, RI, 1987), 297–320: Is there a component of the punctual Hilbert scheme [Grothendieck, Techniques de construction et théorèmes d'existence en géométrie algébrique. IV. Les schémas de Hilbert', in Séminaire Bourbaki, 6 (Societe Mathematique de France, Paris, 1995), 221, 249–276]
$\operatorname {\mathrm {Hilb}}^d({\mathscr {O}}_{\mathbb {A}^n,p})$
with dimension less than
$(n-1)(d-1)$
? For each
$n\geq 4$
, we construct an infinite class of elementary components in
$\operatorname {\mathrm {Hilb}}^d(\mathbb {A}^n)$
producing such examples. Our techniques also allow us to construct an explicit example of a local Artinian ring [Iarrobino and Kanev, Power sums, Gorenstein algebras, and determinantal loci (Springer-Verlag, Berlin, 1999), 221–226] of the form with trivial negative tangents, vanishing nonnegative obstruction space, and socle-dimension
$2$
.
We consider a Deligne–Mumford stack $X$ which is the quotient of an affine scheme $\operatorname {Spec}A$ by the action of a finite group $G$ and show that the Balmer spectrum of the tensor triangulated category of perfect complexes on $X$ is homeomorphic to the space of homogeneous prime ideals in the group cohomology ring $H^*(G,A)$.
Let R be a commutative Noetherian ring. We prove that if R is either an equidimensional finitely generated algebra over a perfect field, or an equidimensional equicharacteristic complete local ring with a perfect residue field, then the annihilator of the singularity category of R coincides with the Jacobian ideal of R up to radical. We establish a relationship between the annihilator of the singularity category of R and the cohomological annihilator of R under some mild assumptions. Finally, we give an upper bound for the dimension of the singularity category of an equicharacteristic excellent local ring with isolated singularity. This extends a result of Dao and Takahashi to non-Cohen–Macaulay rings.
In this paper, we study the Koszul property of the homogeneous coordinate ring of a generic collection of lines in $\mathbb {P}^n$ and the homogeneous coordinate ring of a collection of lines in general linear position in $\mathbb {P}^n.$ We show that if $\mathcal {M}$ is a collection of m lines in general linear position in $\mathbb {P}^n$ with $2m \leq n+1$ and R is the coordinate ring of $\mathcal {M},$ then R is Koszul. Furthermore, if $\mathcal {M}$ is a generic collection of m lines in $\mathbb {P}^n$ and R is the coordinate ring of $\mathcal {M}$ with m even and $m +1\leq n$ or m is odd and $m +2\leq n,$ then R is Koszul. Lastly, we show that if $\mathcal {M}$ is a generic collection of m lines such that
then R is not Koszul. We give a complete characterization of the Koszul property of the coordinate ring of a generic collection of lines for $n \leq 6$ or $m \leq 6$. We also determine the Castelnuovo–Mumford regularity of the coordinate ring for a generic collection of lines and the projective dimension of the coordinate ring of collection of lines in general linear position.
Hilbert–Kunz multiplicity and F-signature are numerical invariants of commutative rings in positive characteristic that measure severity of singularities: for a regular ring both invariants are equal to one and the converse holds under mild assumptions. A natural question is for what singular rings these invariants are closest to one. For Hilbert–Kunz multiplicity this question was first considered by the last two authors and attracted significant attention. In this paper, we study this question, i.e., an upper bound, for F-signature and revisit lower bounds on Hilbert–Kunz multiplicity.
The goal of the article is to better understand cosupport in triangulated categories since it is still quite mysterious. We study boundedness of local cohomology and local homology functors using Koszul objects, give some characterizations of cosupport, and get some results that, in special cases, recover and generalize the known results about the usual cosupport. Additionally, we include some computations of cosupport and provide a comparison of support and cosupport for cohomologically finite objects. Finally, we assign to any object of the category a subset of $\mathrm {Spec}R$, called the big cosupport, and study some of its properties.
For a simple bipartite graph G, we give an upper bound for the regularity of powers of the edge ideal
$I(G)$
in terms of its vertex domination number. Consequently, we explicitly compute the regularity of powers of the edge ideal of a bipartite Kneser graph. Further, we compute the induced matching number of a bipartite Kneser graph.
In this paper we compute the topological Hochschild homology of quotients of discrete valuation rings (DVRs). Along the way we give a short argument for Bökstedt periodicity and generalizations over various other bases. Our strategy also gives a very efficient way to redo the computations of $\operatorname {THH}$ (respectively, logarithmic $\operatorname {THH}$) of complete DVRs originally due to Lindenstrauss and Madsen (respectively, Hesselholt and Madsen).
A celebrated result by Orlov states that any fully faithful exact functor between the bounded derived categories of coherent sheaves on smooth projective varieties is of geometric origin, i.e. it is a Fourier–Mukai functor. In this paper we prove that any smooth projective variety of dimension $\ge 3$ equipped with a tilting bundle can serve as the source variety of a non-Fourier–Mukai functor between smooth projective schemes.