We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This work generalises the short resolution given by Pisón Casares [‘The short resolution of a lattice ideal’, Proc. Amer. Math. Soc.131(4) (2003), 1081–1091] to any affine semigroup. We give a characterisation of Apéry sets which provides a simple way to compute Apéry sets of affine semigroups and Frobenius numbers of numerical semigroups. We also exhibit a new characterisation of the Cohen–Macaulay property for simplicial affine semigroups.
We develop a theory of unbounded derived categories of quasi-coherent sheaves on algebraic stacks. In particular, we show that these categories are compactly generated by perfect complexes for stacks that either have finite stabilizers or are local quotient stacks. We also extend Toën and Antieau–Gepner’s results on derived Azumaya algebras and compact generation of sheaves on linear categories from derived schemes to derived Deligne–Mumford stacks. These are all consequences of our main theorem: compact generation of a presheaf of triangulated categories on an algebraic stack is local for the quasi-finite flat topology.
Let $A$ be a complete local ring with a coefficient field $k$ of characteristic zero, and let $Y$ be its spectrum. The de Rham homology and cohomology of $Y$ have been defined by R. Hartshorne using a choice of surjection $R\rightarrow A$ where $R$ is a complete regular local $k$-algebra: the resulting objects are independent of the chosen surjection. We prove that the Hodge–de Rham spectral sequences abutting to the de Rham homology and cohomology of $Y$, beginning with their $E_{2}$-terms, are independent of the chosen surjection (up to a degree shift in the homology case) and consist of finite-dimensional $k$-spaces. These $E_{2}$-terms therefore provide invariants of $A$ analogous to the Lyubeznik numbers. As part of our proofs we develop a theory of Matlis duality in relation to ${\mathcal{D}}$-modules that is of independent interest. Some of the highlights of this theory are that if $R$ is a complete regular local ring containing $k$ and ${\mathcal{D}}={\mathcal{D}}(R,k)$ is the ring of $k$-linear differential operators on $R$, then the Matlis dual $D(M)$ of any left ${\mathcal{D}}$-module $M$ can again be given a structure of left ${\mathcal{D}}$-module, and if $M$ is a holonomic ${\mathcal{D}}$-module, then the de Rham cohomology spaces of $D(M)$ are $k$-dual to those of $M$.
Given a non-negative integer n and a complete hereditary cotorsion triple , the notion of subcategories in an abelian category is introduced. It is proved that a virtually Gorenstein ring R is n-Gorenstein if and only if the subcategory of Gorenstein injective R-modules is with respect to the cotorsion triple , where stands for the subcategory of Gorenstein projectives. In the case when a subcategory of is closed under direct summands such that each object in admits a right -approximation, a Bazzoni characterization is given for to be . Finally, an Auslander–Reiten correspondence is established between the class of subcategories and that of certain subcategories of which are -coresolving covariantly finite and closed under direct summands.
In this work, we introduce a new set of invariants associated to the linear strands of a minimal free resolution of a $\mathbb{Z}$-graded ideal $I\subseteq R=\Bbbk [x_{1},\ldots ,x_{n}]$. We also prove that these invariants satisfy some properties analogous to those of Lyubeznik numbers of local rings. In particular, they satisfy a consecutiveness property that we prove first for the Lyubeznik table. For the case of squarefree monomial ideals, we get more insight into the relation between Lyubeznik numbers and the linear strands of their associated Alexander dual ideals. Finally, we prove that Lyubeznik numbers of Stanley–Reisner rings are not only an algebraic invariant but also a topological invariant, meaning that they depend on the homeomorphic class of the geometric realization of the associated simplicial complex and the characteristic of the base field.
A very well-covered graph is an unmixed graph whose covering number is half of the number of vertices. We construct an explicit minimal free resolution of the cover ideal of a Cohen–Macaulay very well-covered graph. Using this resolution, we characterize the projective dimension of the edge ideal of a very well-covered graph in terms of a pairwise $3$-disjoint set of complete bipartite subgraphs of the graph. We also show nondecreasing property of the projective dimension of symbolic powers of the edge ideal of a very well-covered graph with respect to the exponents.
Let (A, ${\mathfrak{m}$) be a Cohen–Macaulay local ring of dimension d and let I ⊆ J be two ${\mathfrak{m}$-primary ideals with I a reduction of J. For i = 0,. . .,d, let eiJ(A) (eiI(A)) be the ith Hilbert coefficient of J (I), respectively. We call the number ci(I, J) = eiJ(A) − eiI(A) the ith relative Hilbert coefficient of J with respect to I. If GI(A) is Cohen–Macaulay, then ci(I, J) satisfy various constraints. We also show that vanishing of some ci(I, J) has strong implications on depth GJn(A) for n ≫ 0.
This work concerns the linearity defect of a module $M$ over a Noetherian local ring $R$, introduced by Herzog and Iyengar in 2005, and denoted $\text{ld}_{R}M$. Roughly speaking, $\text{ld}_{R}M$ is the homological degree beyond which the minimal free resolution of $M$ is linear. It is proved that for any ideal $I$ in a regular local ring $R$ and for any finitely generated $R$-module $M$, each of the sequences $(\text{ld}_{R}(I^{n}M))_{n}$ and $(\text{ld}_{R}(M/I^{n}M))_{n}$ is eventually constant. The first statement follows from a more general result about the eventual constancy of the sequence $(\text{ld}_{R}C_{n})_{n}$ where $C$ is a finitely generated graded module over a standard graded algebra over $R$.
We prove the Green–Lazarsfeld secant conjecture [Green and Lazarsfeld, On the projective normality of complete linear series on an algebraic curve, Invent. Math. 83 (1986), 73–90; Conjecture (3.4)] for extremal line bundles on curves of arbitrary gonality, subject to explicit genericity assumptions.
For every integer $k\geqslant 3$ we construct a $k$-gonal curve $C$ along with a very ample divisor of degree $2g+k-1$ (where $g$ is the genus of $C$) to which the vanishing statement from the Green–Lazarsfeld gonality conjecture does not apply.
We prove that the generalized Hilbert–Kunz function of a graded module $M$ over a two-dimensional standard graded normal $K$-domain over an algebraically closed field $K$ of prime characteristic $p$ has the form $gHK(M,q)=e_{gHK}(M)q^{2}+\unicode[STIX]{x1D6FE}(q)$, with rational generalized Hilbert–Kunz multiplicity $e_{gHK}(M)$ and a bounded function $\unicode[STIX]{x1D6FE}(q)$. Moreover, we prove that if $R$ is a $\mathbb{Z}$-algebra, the limit for $p\rightarrow +\infty$ of the generalized Hilbert–Kunz multiplicity $e_{gHK}^{R_{p}}(M_{p})$ over the fibers $R_{p}$ exists, and it is a rational number.
We use supernatural bundles to build $\mathbf{GL}$-equivariant resolutions supported on the diagonal of $\mathbb{P}^{n}\times \mathbb{P}^{n}$, in a way that extends Beilinson’s resolution of the diagonal. We thus obtain results about supernatural bundles that largely parallel known results about exceptional collections. We apply this construction to Boij–Söderberg decompositions of cohomology tables of vector bundles, yielding a proof of concept for the idea that those positive rational decompositions should admit meaningful categorifications.
Let be a Noetherian local ring and let M be a finitely generated R-module of dimension d. Let be a system of parameters of M and let be a d-tuple of positive integers. In this paper we study the length of generalized fractions M(1/(x1, … , xd, 1)), which was introduced by Sharp and Hamieh. First, we study the growth of the function
Then we give an explicit calculation for the function in the case in which M admits a certain Macaulay extension. Most previous results on this topic are improved in a clearly understandable way.
We find conditions on the local cohomology modules of multi-Rees algebras of admissible filtrations which enable us to predict joint reduction numbers. As a consequence, we are able to prove a generalization of a result of Reid, Roberts and Vitulli in the setting of analytically unramified local rings for completeness of power products of complete ideals.
We study the relationship between the reduction number of a primary ideal of a local ring relative to one of its minimal reductions and the multiplicity of the corresponding Sally module. This paper is focused on three goals: (i) to develop a change of rings technique for the Sally module of an ideal to allow extension of results from Cohen–Macaulay rings to more general rings; (ii) to use the fiber of the Sally modules of almost complete intersection ideals to connect its structure to the Cohen–Macaulayness of the special fiber ring; (iii) to extend some of the results of (i) to two-dimensional Buchsbaum rings. Along the way, we provide an explicit realization of the $S_{2}$-fication of arbitrary Buchsbaum rings.
The first two Hilbert coefficients of a primary ideal play an important role in commutative algebra and in algebraic geometry. In this paper we give a complete algebraic structure of the Sally module of integrally closed ideals $I$ in a Cohen–Macaulay local ring $A$ satisfying the equality $\text{e}_{1}(I)=\text{e}_{0}(I)-\ell _{A}(A/I)+\ell _{A}(I^{2}/QI)+1,$ where $Q$ is a minimal reduction of $I$, and $\text{e}_{0}(I)$ and $\text{e}_{1}(I)$ denote the first two Hilbert coefficients of $I,$ respectively, the multiplicity and the Chern number of $I.$ This almost extremal value of $\text{e}_{1}(I)$ with respect to classical inequalities holds a complete description of the homological and the numerical invariants of the associated graded ring. Examples are given.
Harm Derksen made a conjecture concerning degree bounds for the syzygies of rings of polynomial invariants in the non-modular case [Degree bounds for syzygies of invariants, Adv. Math. 185 (2004), 207–214]. We provide counterexamples to this conjecture, but also prove a slightly weakened version. We also prove some general results that give degree bounds on the homology of complexes and of $\text{Tor}\,$ groups.
We compute the characters of the simple $\text{GL}$-equivariant holonomic ${\mathcal{D}}$-modules on the vector spaces of general, symmetric, and skew-symmetric matrices. We realize some of these ${\mathcal{D}}$-modules explicitly as subquotients in the pole order filtration associated to the $\text{determinant}/\text{Pfaffian}$ of a generic matrix, and others as local cohomology modules. We give a direct proof of a conjecture of Levasseur in the case of general and skew-symmetric matrices, and provide counterexamples in the case of symmetric matrices. The character calculations are used in subsequent work with Weyman to describe the ${\mathcal{D}}$-module composition factors of local cohomology modules with determinantal and Pfaffian support.
Over a Cohen–Macaulay (CM) local ring, we characterize those modules that can be obtained as a direct limit of finitely generated maximal CM modules. We point out two consequences of this characterization: (1) Every balanced big CM module, in the sense of Hochster, can be written as a direct limit of small CM modules. In analogy with Govorov and Lazard's characterization of flat modules as direct limits of finitely generated free modules, one can view this as a “structure theorem” for balanced big CM modules. (2) Every finitely generated module has a pre-envelope with respect to the class of finitely generated maximal CM modules. This result is, in some sense, dual to the existence of maximal CM approximations, which has been proved by Auslander and Buchweitz.
Let $R$ be a commutative Gorenstein ring. A result of Araya reduces the Auslander–Reiten conjecture on the vanishing of self-extensions to the case where $R$ has Krull dimension at most one. In this paper we extend Araya’s result to certain $R$-algebras. As a consequence of our argument, we obtain examples of bound quiver algebras that satisfy the Auslander–Reiten conjecture.