To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We define a local homomorphism $(Q,k)\to (R,\ell )$ to be Koszul if its derived fiber $R\otimes ^{\mathsf {L}}_Q k$ is formal, and if $\operatorname {Tor}^{Q}(R,k)$ is Koszul in the classical sense. This recovers the classical definition when Q is a field, and more generally includes all flat deformations of Koszul algebras. The non-flat case is significantly more interesting, and there is no need for examples to be quadratic: all complete intersection and all Golod quotients are Koszul homomorphisms. We show that the class of Koszul homomorphisms enjoys excellent homological properties, and we give many more examples, especially various monomial and Gorenstein examples. We then study Koszul homomorphisms from the perspective of $\mathrm {A}_{\infty }$-structures on resolutions. We use this machinery to construct universal free resolutions of R-modules by generalizing a classical construction of Priddy. The resulting (infinite) free resolution of an R-module M is often minimal and can be described by a finite amount of data whenever M and R have finite projective dimension over Q. Our construction simultaneously recovers the resolutions of Shamash and Eisenbud over a complete intersection ring, and the bar resolutions of Iyengar and Burke over a Golod ring, and produces analogous resolutions for various other classes of local rings.
The global analogue of a Henselian local ring is a Henselian pair – a ring R and an ideal I which satisfy a condition resembling Hensel’s lemma regarding lifting coprime factorizations of monic polynomials over $R/I$ to factorizations over R. The geometric counterpart is the notion of a Henselian scheme, which can serve as a substitute for formal schemes in applications such as deformation theory.
In this paper, we prove a GAGA-style cohomology comparison result for Henselian schemes in positive characteristic, making use of a ‘Henselian étale’ topology defined in previous work in order to leverage exactness of finite pushforward for abelian sheaves in the étale topology of schemes. We will also discuss algebraizability of coherent sheaves on the Henselization of a proper scheme, proving (without a positive characteristic restriction) algebraizability for coherent subsheaves. We can then deduce a Henselian version of Chow’s theorem on algebraization and the algebraizability of maps between Henselizations of proper schemes.
We prove new statistical results about the distribution of the cokernel of a random integral matrix with a concentrated residue. Given a prime p and a positive integer n, consider a random $n \times n$ matrix $X_n$ over the ring $\mathbb{Z}_p$ of p-adic integers whose entries are independent. Previously, Wood showed that as long as each entry of $X_n$ is not too concentrated on a single residue modulo p, regardless of its distribution, the distribution of the cokernel $\mathrm{cok}(X_n)$ of $X_n$, up to isomorphism, weakly converges to the Cohen–Lenstra distribution, as $n \rightarrow \infty$. Here on the contrary, we consider the case when $X_n$ has a concentrated residue $A_n$ so that $X_n = A_n + pB_n$. When $B_n$ is a Haar-random $n \times n$ matrix over $\mathbb{Z}_p$, we explicitly compute the distribution of $\mathrm{cok}(P(X_n))$ for every fixed n and a non-constant monic polynomial $P(t) \in \mathbb{Z}_p[t]$. We deduce our result from an interesting equidistribution result for matrices over $\mathbb{Z}_p[t]/(P(t))$, which we prove by establishing a version of the Weierstrass preparation theorem for the noncommutative ring $\mathrm{M}_n(\mathbb{Z}_p)$ of $n \times n$ matrices over $\mathbb{Z}_p$. We also show through cases the subtlety of the “universality” behavior when $B_n$ is not Haar-random.
Consider a pair of elements f and g in a commutative ring Q. Given a matrix factorization of f and another of g, the tensor product of matrix factorizations, which was first introduced by Knörrer and later generalized by Yoshino, produces a matrix factorization of the sum $f+g$. We will study the tensor product of d-fold matrix factorizations, with a particular emphasis on understanding when the construction has a non-trivial direct sum decomposition. As an application of our results, we construct indecomposable maximal Cohen–Macaulay and Ulrich modules over hypersurface domains of a certain form.
The notion of Vasconcelos invariant, known in the literature as v-number, of a homogeneous ideal in a polynomial ring over a field was introduced in 2020 to study the asymptotic behavior of the minimum distance of projective Reed–Muller type codes. We initiate the study of this invariant for graded modules. Let R be a Noetherian $\mathbb {N}$-graded ring and M be a finitely generated graded R-module. The v-number $v(M)$ can be defined as the least possible degree of a homogeneous element x of M for which $(0:_Rx)$ is a prime ideal of R. For a homogeneous ideal I of R, we mainly prove that $v(I^nM)$ and $v(I^nM/I^{n+1}M)$ are eventually linear functions of n. In addition, if $(0:_M I)=0$, then $v(M/I^{n}M)$ is also eventually linear with the same leading coefficient as that of $v(I^nM/I^{n+1}M)$. These leading coefficients are described explicitly. The result on the linearity of $v(M/I^{n}M)$ considerably strengthens a recent result of Conca which was shown when R is a domain and $M=R$, and Ficarra–Sgroi where the polynomial case is treated.
We use deformations and mutations of scattering diagrams to show that a scattering diagram with initial functions $f_1=(1+tx)^\mu $ and $f_2=(1+ty)^\nu $ has a dense region. This answers a question asked by Gross and Pandharipande [‘Quivers, curves, and the tropical vertex’, Port. Math.67(2) (2010), 211–259] which had been proved only for the case $\mu =\nu $.
We analyze infinitesimal deformations of morphisms of locally free sheaves on a smooth projective variety X over an algebraically closed field of characteristic zero. In particular, we describe a differential graded Lie algebra controlling the deformation problem. As an application, we study infinitesimal deformations of the pairs given by a locally free sheaf and a subspace of its sections with a view toward Brill-Noether theory.
We compute the class groups of full rank upper cluster algebras in terms of the exchange polynomials. This characterizes the UFDs among these algebras. Our results simultaneously generalize theorems of Garcia Elsener, Lampe, and Smertnig from 2019 and of Cao, Keller, and Qin from 2023. Furthermore, we show that every (upper) cluster algebra is a finite factorization domain.
Let $(R,\mathfrak {m})$ be a Noetherian local ring and I an ideal of R. We study how local cohomology modules with support in $\mathfrak {m}$ change for small perturbations J of I, that is, for ideals J such that $I\equiv J\bmod \mathfrak {m}^N$ for large N, under the hypothesis that $R/I$ and $R/J$ share the same Hilbert function. As one of our main results, we show that if $R/I$ is generalized Cohen–Macaulay, then the local cohomology modules of $R/J$ are isomorphic to the corresponding local cohomology modules of $R/I$, except possibly the top one. In particular, this answers a question raised by Quy and V. D. Trung. Our approach also allows us to prove that if $R/I$ is Buchsbaum, then so is $R/J$. Finally, under some additional assumptions, we show that if $R/I$ satisfies Serre’s property $(S_n)$, then so does $R/J$.
We show that for a Noetherian ring A that is I-adically complete for an ideal I, if $A/I$ admits a dualizing complex, so does A. This gives an alternative proof of the fact that a Noetherian complete local ring admits a dualizing complex. We discuss several consequences of this result. We also consider a generalization of the notion of dualizing complexes to infinite-dimensional rings and prove the results in this generality. In addition, we give an alternative proof of the fact that every excellent Henselian local ring admits a dualizing complex, using ultrapower.
In this paper, we show existence of bountiful examples of Gorenstein local rings A and B such that there is a triangle equivalence between the stable categories CM(A), CM(B).
In this paper, we introduce new classes of gluing of complex analytic space germs, called weakly large, large, and strongly large. We describe their Poincaré series and, as applications, we give numerical criteria to determine when these classes of gluing of germs of complex analytic spaces are smooth, singular, complete intersections and Gorenstein, in terms of their Betti numbers. In particular, we show that the gluing of the same germ of complex analytic space along any subspace is always a singular germ.
We establish a McKay correspondence for finite and linearly reductive subgroup schemes of ${\mathbf {SL}}_2$ in positive characteristic. As an application, we obtain a McKay correspondence for all rational double point singularities in characteristic $p\geq 7$. We discuss linearly reductive quotient singularities and canonical lifts over the ring of Witt vectors. In dimension 2, we establish simultaneous resolutions of singularities of these canonical lifts via G-Hilbert schemes. In the appendix, we discuss several approaches towards the notion of conjugacy classes for finite group schemes: This is an ingredient in McKay correspondences, but also of independent interest.
We prove the existence of a power structure over the Grothendieck ring of geometric dg categories. We show that a conjecture by Galkin and Shinder (proved recently by Bergh, Gorchinskiy, Larsen and Lunts) relating the motivic and categorical zeta functions of varieties can be reformulated as a compatibility between the motivic and categorical power structures. Using our power structure, we show that the categorical zeta function of a geometric dg category can be expressed as a power with exponent the category itself. We give applications of our results for the generating series associated with Hilbert schemes of points, categorical Adams operations and series with exponent a linear algebraic group.
In this paper, we develop two new homological invariants called relative dominant dimension with respect to a module and relative codominant dimension with respect to a module. Among the applications are precise connections between Ringel duality, split quasi-hereditary covers and double centralizer properties, constructions of split quasi-hereditary covers of quotients of Iwahori-Hecke algebras using Ringel duality of q-Schur algebras and a new proof for Ringel self-duality of the blocks of the Bernstein-Gelfand-Gelfand category $\mathcal {O}$. These homological invariants are studied over Noetherian algebras which are finitely generated and projective as a module over the ground ring. They are shown to behave nicely under change of rings techniques.
Let ${\mathbf {x}}_{n \times n}$ be an $n \times n$ matrix of variables, and let ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]$ be the polynomial ring in these variables over a field ${\mathbb {F}}$. We study the ideal $I_n \subseteq {\mathbb {F}}[{\mathbf {x}}_{n \times n}]$ generated by all row and column variable sums and all products of two variables drawn from the same row or column. We show that the quotient ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n$ admits a standard monomial basis determined by Viennot’s shadow line avatar of the Schensted correspondence. As a corollary, the Hilbert series of ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n$ is the generating function of permutations in ${\mathfrak {S}}_n$ by the length of their longest increasing subsequence. Along the way, we describe a ‘shadow junta’ basis of the vector space of k-local permutation statistics. We also calculate the structure of ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n$ as a graded ${\mathfrak {S}}_n \times {\mathfrak {S}}_n$-module.
For a reduced hyperplane arrangement, we prove the analytic Twisted Logarithmic Comparison Theorem, subject to mild combinatorial arithmetic conditions on the weights defining the twist. This gives a quasi-isomorphism between the twisted logarithmic de Rham complex and the twisted meromorphic de Rham complex. The latter computes the cohomology of the arrangement’s complement with coefficients from the corresponding rank one local system. We also prove the algebraic variant (when the arrangement is central), and the analytic and algebraic (untwisted) Logarithmic Comparison Theorems. The last item positively resolves an old conjecture of Terao. We also prove that: Every nontrivial rank one local system on the complement can be computed via these Twisted Logarithmic Comparison Theorems; these computations are explicit finite-dimensional linear algebra. Finally, we give some $\mathscr {D}_{X}$-module applications: For example, we give a sharp restriction on the codimension one components of the multivariate Bernstein–Sato ideal attached to an arbitrary factorization of an arrangement. The bound corresponds to (and, in the univariate case, gives an independent proof of) M. Saito’s result that the roots of the Bernstein–Sato polynomial of a non-smooth, central, reduced arrangement live in $(-2 + 1/d, 0).$
Let $(A,\mathfrak{m})$ be a Cohen–Macaulay local ring, and then the notion of a $T$-split sequence was introduced in the part-1 of this paper for the $\mathfrak{m}$-adic filtration with the help of the numerical function $e^T_A$. In this article, we explore the relation between Auslander–Reiten (AR)-sequences and $T$-split sequences. For a Gorenstein ring $(A,\mathfrak{m})$, we define a Hom-finite Krull–Remak–Schmidt category $\mathcal{D}_A$ as a quotient of the stable category $\underline{\mathrm{CM}}(A)$. This category preserves isomorphism, that is, $M\cong N$ in $\mathcal{D}_A$ if and only if $M\cong N$ in $\underline{\mathrm{CM}}(A)$.This article has two objectives: first objective is to extend the notion of $T$-split sequences, and second objective is to explore the function $e^T_A$ and $T$-split sequences. When $(A,\mathfrak{m})$ is an analytically unramified Cohen–Macaulay local ring and $I$ is an $\mathfrak{m}$-primary ideal, then we extend the techniques in part-1 of this paper to the integral closure filtration with respect to $I$ and prove a version of Brauer–Thrall-II for a class of such rings.
Let $\mathbb {F}$ be a field and $(s_0,\ldots ,s_{n-1})$ be a finite sequence of elements of $\mathbb {F}$. In an earlier paper [G. H. Norton, ‘On the annihilator ideal of an inverse form’, J. Appl. Algebra Engrg. Comm. Comput.28 (2017), 31–78], we used the $\mathbb {F}[x,z]$ submodule $\mathbb {F}[x^{-1},z^{-1}]$ of Macaulay’s inverse system $\mathbb {F}[[x^{-1},z^{-1}]]$ (where z is our homogenising variable) to construct generating forms for the (homogeneous) annihilator ideal of $(s_0,\ldots ,s_{n-1})$. We also gave an $\mathcal {O}(n^2)$ algorithm to compute a special pair of generating forms of such an annihilator ideal. Here we apply this approach to the sequence r of the title. We obtain special forms generating the annihilator ideal for $(r_0,\ldots ,r_{n-1})$ without polynomial multiplication or division, so that the algorithm becomes linear. In particular, we obtain its linear complexities. We also give additional applications of this approach.
Let $(A,\mathfrak{m})$ be a regular local ring of dimension $d \geq 1$, I an $\mathfrak{m}$-primary ideal. Let N be a nonzero finitely generated A-module. Consider the functions
of polynomial type and let their degrees be $t^I(N) $ and $e^I(N)$. We prove that $t^I(N) = e^I(N) = \max\{\dim N, d -1 \}$. A crucial ingredient in the proof is that $D^b(A)_f$, the bounded derived category of A with finite length cohomology, has no proper thick subcategories.