To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\Omega _n$ be the ring of polynomial-valued holomorphic differential forms on complex n-space, referred to in physics as the superspace ring of rank n. The symmetric group ${\mathfrak {S}}_n$ acts diagonally on $\Omega _n$ by permuting commuting and anticommuting generators simultaneously. We let $SI_n \subseteq \Omega _n$ be the ideal generated by ${\mathfrak {S}}_n$-invariants with vanishing constant term and study the quotient $SR_n = \Omega _n / SI_n$ of superspace by this ideal. We calculate the doubly-graded Hilbert series of $SR_n$ and prove an ‘operator theorem’, which characterizes the harmonic space $SH_n \subseteq \Omega _n$ attached to $SR_n$ in terms of the Vandermonde determinant and certain differential operators. Our methods employ commutative algebra results that were used in the study of Hessenberg varieties. Our results prove conjectures of N. Bergeron, Colmenarejo, Li, Machacek, Sulzgruber, Swanson, Wallach and Zabrocki.
A classification of multiplication modules over multiplication rings with finitely many minimal primes is obtained. A characterization of multiplication rings with finitely many minimal primes is given via faithful, Noetherian, distributive modules. It is proven that for a multiplication ring with finitely many minimal primes every faithful, Noetherian, distributive module is a faithful multiplication module, and vice versa.
Let V be a finite dimensional vector space over the field with p elements, where p is a prime number. Given arbitrary $\alpha ,\beta \in \mathrm {GL}(V)$, we consider the semidirect products $V\rtimes \langle \alpha \rangle $ and $V\rtimes \langle \beta \rangle $, and show that if $V\rtimes \langle \alpha \rangle $ and $V\rtimes \langle \beta \rangle $ are isomorphic, then $\alpha $ must be similar to a power of $\beta $ that generates the same subgroup as $\beta $; that is, if H and K are cyclic subgroups of $\mathrm {GL}(V)$ such that $V\rtimes H\cong V\rtimes K$, then H and K must be conjugate subgroups of $\mathrm {GL}(V)$. If we remove the cyclic condition, there exist examples of nonisomorphic, let alone nonconjugate, subgroups H and K of $\mathrm {GL}(V)$ such that $V\rtimes H\cong V\rtimes K$. Even if we require that noncyclic subgroups H and K of $\mathrm {GL}(V)$ be abelian, we may still have $V\rtimes H\cong V\rtimes K$ with H and K nonconjugate in $\mathrm {GL}(V)$, but in this case, H and K must at least be isomorphic. If we replace V by a free module U over ${\mathbb {Z}}/p^m{\mathbb {Z}}$ of finite rank, with $m>1$, it may happen that $U\rtimes H\cong U\rtimes K$ for nonconjugate cyclic subgroups of $\mathrm {GL}(U)$. If we completely abandon our requirements on V, a sufficient criterion is given for a finite group G to admit nonconjugate cyclic subgroups H and K of $\mathrm {Aut}(G)$ such that $G\rtimes H\cong G\rtimes K$. This criterion is satisfied by many groups.
We define duality triples and duality pairs in compactly generated triangulated categories and investigate their properties. This enables us to give an elementary way to determine whether a class is closed under pure subobjects, pure quotients and pure extensions, as well as providing a way to show the existence of approximations. One key ingredient is a new characterization of phantom maps. We then introduce an axiomatic form of Auslander–Gruson–Jensen duality, from which we define dual definable categories, and show that these coincide with symmetric coproduct closed duality pairs. This framework is ubiquitous, encompassing both algebraic triangulated categories and stable homotopy theories. Accordingly, we provide many applications in both settings, with a particular emphasis on silting theory and stratified tensor-triangulated categories.
We introduce the notions of quasi-Laurent and Laurent families of simple modules over quiver Hecke algebras of arbitrary symmetrizable types. We prove that such a family plays a similar role of a cluster in quantum cluster algebra theory and exhibits a quantum Laurent positivity phenomenon similar to the basis of the quantum unipotent coordinate ring $\mathcal {A}_q(\mathfrak {n}(w))$, coming from the categorification. Then we show that the families of simple modules categorifying Geiß–Leclerc–Schröer (GLS) clusters are Laurent families by using the Poincaré–Birkhoff–Witt (PBW) decomposition vector of a simple module $X$ and categorical interpretation of (co)degree of $[X]$. As applications of such $\mathbb {Z}\mspace {1mu}$-vectors, we define several skew-symmetric pairings on arbitrary pairs of simple modules, and investigate the relationships among the pairings and $\Lambda$-invariants of $R$-matrices in the quiver Hecke algebra theory.
The Hankel index of a real variety X is an invariant that quantifies the difference between nonnegative quadrics and sums of squares on X. In [5], the authors proved an intriguing bound on the Hankel index in terms of the Green–Lazarsfeld index, which measures the ‘linearity’ of the minimal free resolution of the ideal of X. In all previously known cases, this bound was tight. We provide the first class of examples where the bound is not tight; in fact, the difference between Hankel index and Green–Lazarsfeld index can be arbitrarily large. Our examples are outer projections of rational normal curves, where we identify the center of projection with a binary form F. The Green–Lazarsfeld index of the projected curve is given by the complex Waring border rank of F [16]. We show that the Hankel index is given by the almost real rank of F, which is a new notion that comes from decomposing F as a sum of powers of almost real forms. Finally, we determine the range of possible and typical almost real ranks for binary forms.
We classify the automorphic Lie algebras of equivariant maps from a complex torus to $\mathfrak{sl}_2(\mathbb{C})$. For each case, we compute a basis in a normal form. The automorphic Lie algebras correspond precisely to two disjoint families of Lie algebras parametrised by the modular curve of $\mathrm{PSL}_2({\mathbb{Z}})$, apart from four cases, which are all isomorphic to Onsager’s algebra.
We prove a criterion for the constancy of the Hilbert–Samuel function for locally Noetherian schemes such that the local rings are excellent at every point. More precisely, we show that the Hilbert–Samuel function is locally constant on such a scheme if and only if the scheme is normally flat along its reduction and the reduction itself is regular. Regularity of the underlying reduced scheme is a significant new property.
Let M be a Puiseux monoid, that is, a monoid consisting of nonnegative rationals (under standard addition). In this paper, we study factorisations in atomic Puiseux monoids through the lens of their associated Betti graphs. The Betti graph of $b \in M$ is the graph whose vertices are the factorisations of b with edges between factorisations that share at least one atom. If the Betti graph associated to b is disconnected, then we call b a Betti element of M. We explicitly compute the set of Betti elements for a large class of Puiseux monoids (the atomisations of certain infinite sequences of rationals). The process of atomisation is quite useful in studying the arithmetic of Puiseux monoids, and it has been actively considered in recent literature. This leads to an argument that for every positive integer n, there exists an atomic Puiseux monoid with exactly n Betti elements.
We give a short new proof of a recent result of Hanlon-Hicks-Lazarev about toric varieties. As in their work, this leads to a proof of a conjecture of Berkesch-Erman-Smith on virtual resolutions and to a resolution of the diagonal in the simplicial case.
Given any commutative Noetherian ring R and an element x in R, we consider the full subcategory $\mathsf{C}(x)$ of its singularity category consisting of objects for which the morphism that is given by the multiplication by x is zero. Our main observation is that we can establish a relation between $\mathsf{C}(x), \mathsf{C}(y)$ and $\mathsf{C}(xy)$ for any two ring elements x and y. Utilizing this observation, we obtain a decomposition of the singularity category and consequently an upper bound on the dimension of the singularity category.
We invoke the Bernstein–Gel$'$fand–Gel$'$fand (BGG) correspondence to study subcomplexes of free resolutions given by two well-known complexes, the Koszul and the Eagon–Northcott. This approach provides a complete characterization of the ranks of free modules in a subcomplex in the Koszul case and imposes numerical restrictions in the Eagon–Northcott case.
In the derived category of a commutative noetherian ring, we explicitly construct a silting object associated with each sp-filtration of the Zariski spectrum satisfying the “slice” condition. Our new construction is based on local cohomology and it allows us to study when the silting object is tilting. For a ring admitting a dualizing complex, this occurs precisely when the sp-filtration arises from a codimension function on the spectrum. In the absence of a dualizing complex, the situation is more delicate and the tilting property is closely related to the condition that the ring is a homomorphic image of a Cohen–Macaulay ring. We also provide dual versions of our results in the cosilting case.
We prove that the multiplicity of a filtration of a local ring satisfies various convexity properties. In particular, we show the multiplicity is convex along geodesics. As a consequence, we prove that the volume of a valuation is log convex on simplices of quasi-monomial valuations and give a new proof of a theorem of Xu and Zhuang on the uniqueness of normalized volume minimizers. In another direction, we generalize a theorem of Rees on multiplicities of ideals to filtrations and characterize when the Minkowski inequality for filtrations is an equality under mild assumptions.
Let $S=K[x_1,\ldots ,x_n]$ be the polynomial ring over a field K, and let A be a finitely generated standard graded S-algebra. We show that if the defining ideal of A has a quadratic initial ideal, then all the graded components of A are componentwise linear. Applying this result to the Rees ring $\mathcal {R}(I)$ of a graded ideal I gives a criterion on I to have componentwise linear powers. Moreover, for any given graph G, a construction on G is presented which produces graphs whose cover ideals $I_G$ have componentwise linear powers. This, in particular, implies that for any Cohen–Macaulay Cameron–Walker graph G all powers of $I_G$ have linear resolutions. Moreover, forming a cone on special graphs like unmixed chordal graphs, path graphs, and Cohen–Macaulay bipartite graphs produces cover ideals with componentwise linear powers.
We conduct a systematic study of the Ehrhart theory of certain slices of rectangular prisms. Our polytopes are generalizations of the hypersimplex and are contained in the larger class of polypositroids introduced by Lam and Postnikov; moreover, they coincide with polymatroids satisfying the strong exchange property up to an affinity. We give a combinatorial formula for all the Ehrhart coefficients in terms of the number of weighted permutations satisfying certain compatibility properties. This result proves that all these polytopes are Ehrhart positive. Additionally, via an extension of a result by Early and Kim, we give a combinatorial interpretation for all the coefficients of the $h^*$-polynomial. All of our results provide a combinatorial understanding of the Hilbert functions and the h-vectors of all algebras of Veronese type, a problem that had remained elusive up to this point. A variety of applications are discussed, including expressions for the volumes of these slices of prisms as weighted combinations of Eulerian numbers; some extensions of Laplace’s result on the combinatorial interpretation of the volume of the hypersimplex; a multivariate generalization of the flag Eulerian numbers and refinements; and a short proof of the Ehrhart positivity of the independence polytope of all uniform matroids.
We introduce a new concept of rank – relative rank associated to a filtered collection of polynomials. When the filtration is trivial, our relative rank coincides with Schmidt rank (also called strength). We also introduce the notion of relative bias. The main result of the paper is a relation between these two quantities over finite fields (as a special case, we obtain a new proof of the results in [21]). This relation allows us to get an accurate estimate for the number of points on an affine variety given by a collection of polynomials which is of high relative rank (Lemma 3.2). The key advantage of relative rank is that it allows one to perform an efficient regularization procedure which is polynomial in the initial number of polynomials (the regularization process with Schmidt rank is far worse than tower exponential). The main result allows us to replace Schmidt rank with relative rank in many key applications in combinatorics, algebraic geometry, and algebra. For example, we prove that any collection of polynomials $\mathcal P=(P_i)_{i=1}^c$ of degrees $\le d$ in a polynomial ring over an algebraically closed field of characteristic $>d$ is contained in an ideal $\mathcal I({\mathcal Q})$, generated by a collection ${\mathcal Q}$ of polynomials of degrees $\le d$ which form a regular sequence, and ${\mathcal Q}$ is of size $\le A c^{A}$, where $A=A(d)$ is independent of the number of variables.
We give an explicit formula to count the number of geometric branches of a curve in positive characteristic using the theory of tight closure. This formula readily shows that the property of having a single geometric branch characterizes F-nilpotent curves. Further, we show that a reduced, local F-nilpotent ring has a single geometric branch; in particular, it is a domain. Finally, we study inequalities of Frobenius test exponents along purely inseparable ring extensions with applications to F-nilpotent affine semigroup rings.
It is well known that the edge ideal $I(G)$ of a simple graph G has linear quotients if and only if $G^c$ is chordal. We investigate when the property of having linear quotients is inherited by homological shift ideals of an edge ideal. We will see that adding a cluster to the graph $G^c$ when $I(G)$ has homological linear quotients results in a graph with the same property. In particular, $I(G)$ has homological linear quotients when $G^c$ is a block graph. We also show that adding pinnacles to trees preserves the property of having homological linear quotients for the edge ideal of their complements. Furthermore, $I(G)$ has homological linear quotients for every graph G such that $G^c$ is a $\lambda $-minimal chordal graph.
We prove new results concerning the additive Galois module structure of wildly ramified non-abelian extensions $K/\mathbb{Q}$ with Galois group isomorphic to $A_4$, $S_4$, $A_5$, and dihedral groups of order $2p^n$ for certain prime powers $p^n$. In particular, when $K/\mathbb{Q}$ is a Galois extension with Galois group $G$ isomorphic to $A_4$, $S_4$ or $A_5$, we give necessary and sufficient conditions for the ring of integers $\mathcal{O}_{K}$ to be free over its associated order in the rational group algebra $\mathbb{Q}[G]$.