To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we study sample size thresholds for maximum likelihood estimation for tensor normal models. Given the model parameters and the number of samples, we determine whether, almost surely, (1) the likelihood function is bounded from above, (2) maximum likelihood estimates (MLEs) exist, and (3) MLEs exist uniquely. We obtain a complete answer for both real and complex models. One consequence of our results is that almost sure boundedness of the log-likelihood function guarantees almost sure existence of an MLE. Our techniques are based on invariant theory and castling transforms.
We consider a quiver with potential (QP) $(Q(D),W(D))$ and an iced quiver with potential (IQP) $(\overline {Q}(D), F(D), \overline {W}(D))$ associated with a Postnikov Diagram D and prove that their mutations are compatible with the geometric exchanges of D. This ensures that we may define a QP $(Q,W)$ and an IQP $(\overline {Q},F,\overline {W})$ for a Grassmannian cluster algebra up to mutation equivalence. It shows that $(Q,W)$ is always rigid (thus nondegenerate) and Jacobi-finite. Moreover, in fact, we show that it is the unique nondegenerate (thus rigid) QP by using a general result of Geiß, Labardini-Fragoso, and Schröer (2016, Advances in Mathematics 290, 364–452).
Then we show that, within the mutation class of the QP for a Grassmannian cluster algebra, the quivers determine the potentials up to right equivalence. As an application, we verify that the auto-equivalence group of the generalized cluster category ${\mathcal {C}}_{(Q, W)}$ is isomorphic to the cluster automorphism group of the associated Grassmannian cluster algebra ${{\mathcal {A}}_Q}$ with trivial coefficients.
Let R be a Cohen–Macaulay local K-algebra or a standard graded K-algebra over a field K with a canonical module $\omega _R$. The trace of $\omega _R$ is the ideal $\operatorname {tr}(\omega _R)$ of R which is the sum of those ideals $\varphi (\omega _R)$ with ${\varphi \in \operatorname {Hom}_R(\omega _R,R)}$. The smallest number s for which there exist $\varphi _1, \ldots , \varphi _s \in \operatorname {Hom}_R(\omega _R,R)$ with $\operatorname {tr}(\omega _R)=\varphi _1(\omega _R) + \cdots + \varphi _s(\omega _R)$ is called the Teter number of R. We say that R is of Teter type if $s = 1$. It is shown that R is not of Teter type if R is generically Gorenstein. In the present paper, we focus especially on zero-dimensional graded and monomial K-algebras and present various classes of such algebras which are of Teter type.
When is an ideal of a ring radical or prime? By examining its generators, one may in many cases definably and uniformly test the ideal’s properties. We seek to establish such definable formulas in rings of p-adic power series, such as $\mathbb Q_{p}\langle X\rangle $, $\mathbb Z_{p}\langle X\rangle $, and related rings of power series over more general valuation rings and their fraction fields. We obtain a definable, uniform test for radicality, and, in the one-dimensional case, for primality. This builds upon the techniques stemming from the proof of the quantifier elimination results for the analytic theory of the p-adic integers by Denef and van den Dries, and the linear algebra methods of Hermann and Seidenberg.
A celebrated result by Orlov states that any fully faithful exact functor between the bounded derived categories of coherent sheaves on smooth projective varieties is of geometric origin, i.e. it is a Fourier–Mukai functor. In this paper we prove that any smooth projective variety of dimension $\ge 3$ equipped with a tilting bundle can serve as the source variety of a non-Fourier–Mukai functor between smooth projective schemes.
A (folklore?) conjecture states that no holomorphic modular form $F(\tau )=\sum _{n=1}^{\infty } a_nq^n\in q\mathbb Z[[q]]$ exists, where $q=e^{2\pi i\tau }$, such that its anti-derivative $\sum _{n=1}^{\infty } a_nq^n/n$ has integral coefficients in the q-expansion. A recent observation of Broadhurst and Zudilin, rigorously accomplished by Li and Neururer, led to examples of meromorphic modular forms possessing the integrality property. In this note, we investigate the arithmetic phenomenon from a systematic perspective and discuss related transcendental extensions of the differentially closed ring of quasi-modular forms.
The purpose of this paper is to investigate the properties of spectral and tiling subsets of cyclic groups, with an eye towards the spectral set conjecture [9] in one dimension, which states that a bounded measurable subset of $\mathbb {R}$ accepts an orthogonal basis of exponentials if and only if it tiles $\mathbb {R}$ by translations. This conjecture is strongly connected to its discrete counterpart, namely that, in every finite cyclic group, a subset is spectral if and only if it is a tile. The tools presented herein are refinements of recent ones used in the setting of cyclic groups; the structure of vanishing sums of roots of unity [20] is a prevalent notion throughout the text, as well as the structure of tiling subsets of integers [1]. We manage to prove the conjecture for cyclic groups of order $p^{m}q^{n}$, when one of the exponents is $\leq 6$ or when $p^{m-2}<q^{4}$, and also prove that a tiling subset of a cyclic group of order $p_{1}^{m}p_{2}\dotsm p_{n}$ is spectral.
Recently Ovsienko and Tabachnikov considered extensions of Somos and Gale-Robinson sequences, defined over the algebra of dual numbers. Ovsienko used the same idea to construct so-called shadow sequences derived from other nonlinear recurrence relations exhibiting the Laurent phenomenon, with the original motivation being the hope that these examples should lead to an appropriate notion of a cluster superalgebra, incorporating Grassmann variables. Here, we present various explicit expressions for the shadow of Somos-4 sequences and describe the solution of a general Somos-4 recurrence defined over the $\mathbb{C}$-algebra of dual numbers from several different viewpoints: analytic formulae in terms of elliptic functions, linear difference equations, and Hankel determinants.
Given a Henselian valuation, we study its definability (with and without parameters) by examining conditions on the value group. We show that any Henselian valuation whose value group is not closed in its divisible hull is definable in the language of rings, using one parameter. Thereby we strengthen known definability results. Moreover, we show that in this case, one parameter is optimal in the sense that one cannot obtain definability without parameters. To this end, we present a construction method for a t-Henselian non-Henselian ordered field elementarily equivalent to a Henselian field with a specified value group.
Let $(A,\mathfrak m)$ be an excellent two-dimensional normal local domain. In this paper, we study the elliptic and the strongly elliptic ideals of A with the aim to characterize elliptic and strongly elliptic singularities, according to the definitions given by Wagreich and Yau. In analogy with the rational singularities, in the main result, we characterize a strongly elliptic singularity in terms of the normal Hilbert coefficients of the integrally closed $\mathfrak m$-primary ideals of A. Unlike $p_g$-ideals, elliptic ideals and strongly elliptic ideals are not necessarily normal and necessary, and sufficient conditions for being normal are given. In the last section, we discuss the existence (and the effective construction) of strongly elliptic ideals in any two-dimensional normal local ring.
Let $f:R\to S$ be a ring homomorphism and J be an ideal of S. Then the subring $R\bowtie ^fJ:=\{(r,f(r)+j)\mid r\in R$ and $j\in J\}$ of $R\times S$ is called the amalgamation of R with S along J with respect to f. In this paper, we characterize when $R\bowtie ^fJ$ is a Hilbert ring. As an application, we provide an example of Hilbert ring with maximal ideals of different heights. We also construct non-Noetherian Hilbert rings whose maximal ideals are all finitely generated (unruly Hilbert rings).
We undertake a systematic study of Lipschitz normally embedded normal complex surface germs. We prove, in particular, that the topological type of such a germ determines the combinatorics of its minimal resolution which factors through the blowup of its maximal ideal and through its Nash transform, as well as the polar curve and the discriminant curve of a generic plane projection, thus generalizing results of Spivakovsky and Bondil that were known for minimal surface singularities. In an appendix, we give a new example of a Lipschitz normally embedded surface singularity.
A number of spectrum constructions have been devised to extract topological spaces from algebraic data. Prominent examples include the Zariski spectrum of a commutative ring, the Stone spectrum of a bounded distributive lattice, the Gelfand spectrum of a commutative unital C*-algebra and the Hofmann–Lawson spectrum of a continuous frame.
Inspired by the examples above, we define a spectrum for localic semirings. We use arguments in the symmetric monoidal category of suplattices to prove that, under conditions satisfied by the aforementioned examples, the spectrum can be constructed as the frame of overt weakly closed radical ideals and that it reduces to the usual constructions in those cases. Our proofs are constructive.
Our approach actually gives ‘quantalic’ spectrum from which the more familiar localic spectrum can then be derived. For a discrete ring this yields the quantale of ideals and in general should contain additional ‘differential’ information about the semiring.
We introduce a notion of embedding codimension of an arbitrary local ring, establish some general properties and study in detail the case of arc spaces of schemes of finite type over a field. Viewing the embedding codimension as a measure of singularities, our main result can be interpreted as saying that the singularities of the arc space are maximal at the arcs that are fully embedded in the singular locus of the underlying scheme, and progressively improve as we move away from said locus. As an application, we complement a theorem of Drinfeld, Grinberg and Kazhdan on formal neighbourhoods in arc spaces by providing a converse to their theorem, an optimal bound for the embedding codimension of the formal model appearing in the statement, a precise formula for the embedding dimension of the model constructed in Drinfeld’s proof and a geometric meaningful way of realising the decomposition stated in the theorem.
We continue the work started in parts (I) and (II) of this series. In this paper, we classify which continuous quivers of type A are derived equivalent. Next, we define the new ${\mathcal {C}(A_{{\mathbb {R}},S})}$, which we call weak continuous cluster category. It is a triangulated category, it does not have cluster structure but it has a new weaker notion of “cluster theory.” We show that the original continuous cluster category of [15] is a localization of this new weak continuous cluster category. We define cluster theories to be appropriate groupoids and we show that cluster structures satisfy the conditions for cluster theories. We describe the relationship between different cluster theories: some new and some obtained from cluster structures. The notion of continuous mutation which appears in cluster theories (but not in cluster structures) appears in the next paper [20].
For a not-necessarily commutative ring $R$ we define an abelian group $W(R;M)$ of Witt vectors with coefficients in an $R$-bimodule $M$. These groups generalize the usual big Witt vectors of commutative rings and we prove that they have analogous formal properties and structure. One main result is that $W(R) := W(R;R)$ is Morita invariant in $R$. For an $R$-linear endomorphism $f$ of a finitely generated projective $R$-module we define a characteristic element $\chi _f \in W(R)$. This element is a non-commutative analogue of the classical characteristic polynomial and we show that it has similar properties. The assignment $f \mapsto \chi _f$ induces an isomorphism between a suitable completion of cyclic $K$-theory $K_0^{\mathrm {cyc}}(R)$ and $W(R)$.
Let $f\colon Y \to X$ be a proper flat morphism of locally noetherian schemes. Then the locus in $X$ over which $f$ is smooth is stable under generization. We prove that, under suitable assumptions on the formal fibers of $X$, the same property holds for other local properties of morphisms, even if $f$ is only closed and flat. Our proof of this statement reduces to a purely local question known as Grothendieck's localization problem. To answer Grothendieck's problem, we provide a general framework that gives a uniform treatment of previously known cases of this problem, and also solves this problem in new cases, namely for weak normality, seminormality, $F$-rationality, and the ‘Cohen–Macaulay and $F$-injective’ property. For the weak normality statement, we prove that weak normality always lifts from Cartier divisors. We also solve Grothendieck's localization problem for terminal, canonical, and rational singularities in equal characteristic zero.
We extend the theory of Koszul modules to the bi-graded case, and prove a vanishing theorem that allows us to show that the canonical ribbon conjecture of Bayer and Eisenbud holds over a field of characteristic $0$ or at least equal to the Clifford index. Our results confirm a conjecture of Eisenbud and Schreyer regarding the characteristics where the generic statement of Green's conjecture holds. They also recover and extend to positive characteristics the results of Voisin asserting that Green's conjecture holds for generic curves of each gonality.
It is proved that if $\varphi \colon A\to B$ is a local homomorphism of commutative noetherian local rings, a nonzero finitely generated B-module N whose flat dimension over A is at most $\operatorname {edim} A - \operatorname {edim} B$ is free over B and $\varphi $ is a special type of complete intersection. This result is motivated by a ‘patching method’ developed by Taylor and Wiles and a conjecture of de Smit, proved by the first author, dealing with the special case when N is flat over A.
Let R be an integral domain with $qf(R)=K$, and let $F(R)$ be the set of nonzero fractional ideals of R. Call R a dually compact domain (DCD) if, for each $I\in F(R)$, the ideal $I_{v}=(I^{-1})^{-1}$ is a finite intersection of principal fractional ideals. We characterize DCDs and show that the class of DCDs properly contains various classes of integral domains, such as Noetherian, Mori, and Krull domains. In addition, we show that a Schreier DCD is a greatest common divisor (GCD) (Greatest Common Divisor) domain with the property that, for each $A\in F(R)$, the ideal $A_{v}$ is principal. We show that a domain R is G-Dedekind (i.e., has the property that $A_{v}$ is invertible for each $A\in F(R)$) if and only if R is a DCD satisfying the property $\ast :$ For all pairs of subsets $\{a_{1},\ldots ,a_{m}\},\{b_{1},\ldots ,b_{n}\}\subseteq K\backslash \{0\}, (\cap _{i=1}^{m}(a_{i})(\cap _{j=1}^{n}(b_{j}))=\cap _{i,j=1}^{m,n}(a_{i}b_{j})$. We discuss what the appropriate names for G-Dedekind domains and related notions should be. We also make some observations about how the DCDs behave under localizations and polynomial ring extensions.