To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Recently Ovsienko and Tabachnikov considered extensions of Somos and Gale-Robinson sequences, defined over the algebra of dual numbers. Ovsienko used the same idea to construct so-called shadow sequences derived from other nonlinear recurrence relations exhibiting the Laurent phenomenon, with the original motivation being the hope that these examples should lead to an appropriate notion of a cluster superalgebra, incorporating Grassmann variables. Here, we present various explicit expressions for the shadow of Somos-4 sequences and describe the solution of a general Somos-4 recurrence defined over the $\mathbb{C}$-algebra of dual numbers from several different viewpoints: analytic formulae in terms of elliptic functions, linear difference equations, and Hankel determinants.
Given a Henselian valuation, we study its definability (with and without parameters) by examining conditions on the value group. We show that any Henselian valuation whose value group is not closed in its divisible hull is definable in the language of rings, using one parameter. Thereby we strengthen known definability results. Moreover, we show that in this case, one parameter is optimal in the sense that one cannot obtain definability without parameters. To this end, we present a construction method for a t-Henselian non-Henselian ordered field elementarily equivalent to a Henselian field with a specified value group.
Let $(A,\mathfrak m)$ be an excellent two-dimensional normal local domain. In this paper, we study the elliptic and the strongly elliptic ideals of A with the aim to characterize elliptic and strongly elliptic singularities, according to the definitions given by Wagreich and Yau. In analogy with the rational singularities, in the main result, we characterize a strongly elliptic singularity in terms of the normal Hilbert coefficients of the integrally closed $\mathfrak m$-primary ideals of A. Unlike $p_g$-ideals, elliptic ideals and strongly elliptic ideals are not necessarily normal and necessary, and sufficient conditions for being normal are given. In the last section, we discuss the existence (and the effective construction) of strongly elliptic ideals in any two-dimensional normal local ring.
Let $f:R\to S$ be a ring homomorphism and J be an ideal of S. Then the subring $R\bowtie ^fJ:=\{(r,f(r)+j)\mid r\in R$ and $j\in J\}$ of $R\times S$ is called the amalgamation of R with S along J with respect to f. In this paper, we characterize when $R\bowtie ^fJ$ is a Hilbert ring. As an application, we provide an example of Hilbert ring with maximal ideals of different heights. We also construct non-Noetherian Hilbert rings whose maximal ideals are all finitely generated (unruly Hilbert rings).
We undertake a systematic study of Lipschitz normally embedded normal complex surface germs. We prove, in particular, that the topological type of such a germ determines the combinatorics of its minimal resolution which factors through the blowup of its maximal ideal and through its Nash transform, as well as the polar curve and the discriminant curve of a generic plane projection, thus generalizing results of Spivakovsky and Bondil that were known for minimal surface singularities. In an appendix, we give a new example of a Lipschitz normally embedded surface singularity.
A number of spectrum constructions have been devised to extract topological spaces from algebraic data. Prominent examples include the Zariski spectrum of a commutative ring, the Stone spectrum of a bounded distributive lattice, the Gelfand spectrum of a commutative unital C*-algebra and the Hofmann–Lawson spectrum of a continuous frame.
Inspired by the examples above, we define a spectrum for localic semirings. We use arguments in the symmetric monoidal category of suplattices to prove that, under conditions satisfied by the aforementioned examples, the spectrum can be constructed as the frame of overt weakly closed radical ideals and that it reduces to the usual constructions in those cases. Our proofs are constructive.
Our approach actually gives ‘quantalic’ spectrum from which the more familiar localic spectrum can then be derived. For a discrete ring this yields the quantale of ideals and in general should contain additional ‘differential’ information about the semiring.
We introduce a notion of embedding codimension of an arbitrary local ring, establish some general properties and study in detail the case of arc spaces of schemes of finite type over a field. Viewing the embedding codimension as a measure of singularities, our main result can be interpreted as saying that the singularities of the arc space are maximal at the arcs that are fully embedded in the singular locus of the underlying scheme, and progressively improve as we move away from said locus. As an application, we complement a theorem of Drinfeld, Grinberg and Kazhdan on formal neighbourhoods in arc spaces by providing a converse to their theorem, an optimal bound for the embedding codimension of the formal model appearing in the statement, a precise formula for the embedding dimension of the model constructed in Drinfeld’s proof and a geometric meaningful way of realising the decomposition stated in the theorem.
We continue the work started in parts (I) and (II) of this series. In this paper, we classify which continuous quivers of type A are derived equivalent. Next, we define the new ${\mathcal {C}(A_{{\mathbb {R}},S})}$, which we call weak continuous cluster category. It is a triangulated category, it does not have cluster structure but it has a new weaker notion of “cluster theory.” We show that the original continuous cluster category of [15] is a localization of this new weak continuous cluster category. We define cluster theories to be appropriate groupoids and we show that cluster structures satisfy the conditions for cluster theories. We describe the relationship between different cluster theories: some new and some obtained from cluster structures. The notion of continuous mutation which appears in cluster theories (but not in cluster structures) appears in the next paper [20].
For a not-necessarily commutative ring $R$ we define an abelian group $W(R;M)$ of Witt vectors with coefficients in an $R$-bimodule $M$. These groups generalize the usual big Witt vectors of commutative rings and we prove that they have analogous formal properties and structure. One main result is that $W(R) := W(R;R)$ is Morita invariant in $R$. For an $R$-linear endomorphism $f$ of a finitely generated projective $R$-module we define a characteristic element $\chi _f \in W(R)$. This element is a non-commutative analogue of the classical characteristic polynomial and we show that it has similar properties. The assignment $f \mapsto \chi _f$ induces an isomorphism between a suitable completion of cyclic $K$-theory $K_0^{\mathrm {cyc}}(R)$ and $W(R)$.
Let $f\colon Y \to X$ be a proper flat morphism of locally noetherian schemes. Then the locus in $X$ over which $f$ is smooth is stable under generization. We prove that, under suitable assumptions on the formal fibers of $X$, the same property holds for other local properties of morphisms, even if $f$ is only closed and flat. Our proof of this statement reduces to a purely local question known as Grothendieck's localization problem. To answer Grothendieck's problem, we provide a general framework that gives a uniform treatment of previously known cases of this problem, and also solves this problem in new cases, namely for weak normality, seminormality, $F$-rationality, and the ‘Cohen–Macaulay and $F$-injective’ property. For the weak normality statement, we prove that weak normality always lifts from Cartier divisors. We also solve Grothendieck's localization problem for terminal, canonical, and rational singularities in equal characteristic zero.
We extend the theory of Koszul modules to the bi-graded case, and prove a vanishing theorem that allows us to show that the canonical ribbon conjecture of Bayer and Eisenbud holds over a field of characteristic $0$ or at least equal to the Clifford index. Our results confirm a conjecture of Eisenbud and Schreyer regarding the characteristics where the generic statement of Green's conjecture holds. They also recover and extend to positive characteristics the results of Voisin asserting that Green's conjecture holds for generic curves of each gonality.
It is proved that if $\varphi \colon A\to B$ is a local homomorphism of commutative noetherian local rings, a nonzero finitely generated B-module N whose flat dimension over A is at most $\operatorname {edim} A - \operatorname {edim} B$ is free over B and $\varphi $ is a special type of complete intersection. This result is motivated by a ‘patching method’ developed by Taylor and Wiles and a conjecture of de Smit, proved by the first author, dealing with the special case when N is flat over A.
Let R be an integral domain with $qf(R)=K$, and let $F(R)$ be the set of nonzero fractional ideals of R. Call R a dually compact domain (DCD) if, for each $I\in F(R)$, the ideal $I_{v}=(I^{-1})^{-1}$ is a finite intersection of principal fractional ideals. We characterize DCDs and show that the class of DCDs properly contains various classes of integral domains, such as Noetherian, Mori, and Krull domains. In addition, we show that a Schreier DCD is a greatest common divisor (GCD) (Greatest Common Divisor) domain with the property that, for each $A\in F(R)$, the ideal $A_{v}$ is principal. We show that a domain R is G-Dedekind (i.e., has the property that $A_{v}$ is invertible for each $A\in F(R)$) if and only if R is a DCD satisfying the property $\ast :$ For all pairs of subsets $\{a_{1},\ldots ,a_{m}\},\{b_{1},\ldots ,b_{n}\}\subseteq K\backslash \{0\}, (\cap _{i=1}^{m}(a_{i})(\cap _{j=1}^{n}(b_{j}))=\cap _{i,j=1}^{m,n}(a_{i}b_{j})$. We discuss what the appropriate names for G-Dedekind domains and related notions should be. We also make some observations about how the DCDs behave under localizations and polynomial ring extensions.
We show that the Specht ideal of a two-rowed partition is perfect over an arbitrary field, provided that the characteristic is either zero or bounded below by the size of the second row of the partition, and we show this lower bound is tight. We also establish perfection and other properties of certain variants of Specht ideals, and find a surprising connection to the weak Lefschetz property. Our results, in particular, give a self-contained proof of Cohen–Macaulayness of certain h-equals sets, a result previously obtained by Etingof–Gorsky–Losev over the complex numbers using rational Cherednik algebras.
Spaces of power series solutions $y(\mathrm {t})$ in one variable $\mathrm {t}$ of systems of polynomial, algebraic, analytic or formal equations $f(\mathrm {t},\mathrm {y})=0$ can be viewed as ‘infinite-dimensional’ varieties over the ground field $\mathbf {k}$ as well as ‘finite-dimensional’ schemes over the power series ring $\mathbf {k}[[\mathrm {t}]]$. We propose to call these solution spaces arquile varieties, as an enhancement of the concept of arc spaces. It will be proven that arquile varieties admit a natural stratification ${\mathcal Y}=\bigsqcup {\mathcal Y}_d$, $d\in {\mathbb N}$, such that each stratum ${\mathcal Y}_d$ is isomorphic to a Cartesian product ${\mathcal Z}_d\times \mathbb A^{\infty }_{\mathbf {k}}$ of a finite-dimensional, possibly singular variety ${\mathcal Z}_d$ over $\mathbf {k}$ with an affine space $\mathbb A^{\infty }_{\mathbf {k}}$ of infinite dimension. This shows that the singularities of the solution space of $f(\mathrm {t},\mathrm {y})=0$ are confined, up to the stratification, to the finite-dimensional part.
Our results are established simultaneously for algebraic, convergent and formal power series, as well as convergent power series with prescribed radius of convergence. The key technical tool is a linearisation theorem, already used implicitly by Greenberg and Artin, showing that analytic maps between power series spaces can be essentially linearised by automorphisms of the source space.
Instead of stratifying arquile varieties, one may alternatively consider formal neighbourhoods of their regular points and reprove with similar methods the Grinberg–Kazhdan–Drinfeld factorisation theorem for arc spaces in the classical setting and in the more general setting.
We discuss practical methods for computing the space of solutions to an arbitrary homogeneous linear system of partial differential equations with constant coefficients. These rest on the Fundamental Principle of Ehrenpreis–Palamodov from the 1960s. We develop this further using recent advances in computational commutative algebra.
Let R be a commutative ring with identity which is not an integral domain. An ideal I of R is called an annihilating ideal if there exists $r\in R- \{0\}$ such that $Ir=(0)$. The total graph of nonzero annihilating ideals of R is the graph $\Omega (R)$ whose vertices are the nonzero annihilating ideals of R and two distinct vertices $I,J$ are joined if and only if $I+J$ is also an annihilating ideal of R. We study the strong metric dimension of $\Omega (R)$ and evaluate it in several cases.
Geometric vertex decomposition and liaison are two frameworks that have been used to produce similar results about similar families of algebraic varieties. In this paper, we establish an explicit connection between these approaches. In particular, we show that each geometrically vertex decomposable ideal is linked by a sequence of elementary G-biliaisons of height $1$ to an ideal of indeterminates and, conversely, that every G-biliaison of a certain type gives rise to a geometric vertex decomposition. As a consequence, we can immediately conclude that several well-known families of ideals are glicci, including Schubert determinantal ideals, defining ideals of varieties of complexes and defining ideals of graded lower bound cluster algebras.
Let $\mathsf {C}$ be a symmetrisable generalised Cartan matrix. We introduce four different versions of double Bott–Samelson cells for every pair of positive braids in the generalised braid group associated to $\mathsf {C}$. We prove that the decorated double Bott–Samelson cells are smooth affine varieties, whose coordinate rings are naturally isomorphic to upper cluster algebras.
We explicitly describe the Donaldson–Thomas transformations on double Bott–Samelson cells and prove that they are cluster transformations. As an application, we complete the proof of the Fock–Goncharov duality conjecture in these cases. We discover a periodicity phenomenon of the Donaldson–Thomas transformations on a family of double Bott–Samelson cells. We give a (rather simple) geometric proof of Zamolodchikov’s periodicity conjecture in the cases of $\Delta \square \mathrm {A}_r$.
When $\mathsf {C}$ is of type $\mathrm {A}$, the double Bott–Samelson cells are isomorphic to Shende–Treumann–Zaslow’s moduli spaces of microlocal rank-1 constructible sheaves associated to Legendrian links. By counting their $\mathbb {F}_q$-points we obtain rational functions that are Legendrian link invariants.
In this short article, we will be principally investigating two classes of modules over any given group ring – the class of Gorenstein projectives and the class of Benson's cofibrants. We begin by studying various properties of these two classes and studying some of these properties comparatively against each other. There is a conjecture made by Fotini Dembegioti and Olympia Talelli that these two classes should coincide over the integral group ring for any group. We make this conjecture over group rings over commutative rings of finite global dimension and prove it for some classes of groups while also proving other related results involving the two classes of modules mentioned.