To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For $\mathscr {B} \subseteq \mathbb {N} $, the $ \mathscr {B} $-free subshift $ X_{\eta } $ is the orbit closure of the characteristic function of the set of $ \mathscr {B} $-free integers. We show that many results about invariant measures and entropy, previously only known for the hereditary closure of $ X_{\eta } $, have their analogues for $ X_{\eta } $ as well. In particular, we settle in the affirmative a conjecture of Keller about a description of such measures [G. Keller. Generalized heredity in $\mathcal B$-free systems. Stoch. Dyn.21(3) (2021), Paper No. 2140008]. A central assumption in our work is that $\eta ^{*} $ (the Toeplitz sequence that generates the unique minimal component of $ X_{\eta } $) is regular. From this, we obtain natural periodic approximations that we frequently use in our proofs to bound the elements in $ X_{\eta } $ from above and below.
For a continuous $\mathbb {N}^d$ or $\mathbb {Z}^d$ action on a compact space, we introduce the notion of Bohr chaoticity, which is an invariant of topological conjugacy and which is proved stronger than having positive entropy. We prove that all principal algebraic $\mathbb {Z}$ actions of positive entropy are Bohr chaotic. The same is proved for principal algebraic actions of $\mathbb {Z}^d$ with positive entropy under the condition of existence of summable homoclinic points.
We describe two kinds of regular invariant measures on the boundary path space $\partial E$ of a second countable topological graph E, which allows us to describe all extremal tracial weights on $C^{*}(E)$ which are not gauge-invariant. Using this description, we prove that all tracial weights on the C$^{*}$-algebra $C^{*}(E)$ of a second countable topological graph E are gauge-invariant when E is free. This in particular implies that all tracial weights on $C^{*}(E)$ are gauge-invariant when $C^{*}(E)$ is simple and separable.
We study the Diophantine transference principle over function fields. By adapting the approach of Beresnevich and Velani [‘An inhomogeneous transference principle and Diophantine approximation’, Proc. Lond. Math. Soc. (3)101 (2010), 821–851] to function fields, we extend many results from homogeneous to inhomogeneous Diophantine approximation. This also yields the inhomogeneous Baker–Sprindžuk conjecture over function fields and upper bounds for the general nonextremal scenario.
We find sufficient conditions for bounded density shifts to have a unique measure of maximal entropy. We also prove that every measure of maximal entropy of a bounded density shift is fully supported. As a consequence of this, we obtain that bounded density shifts are surjunctive.
Let $ G $ be a connected semisimple real algebraic group and $\Gamma <G$ be a Zariski dense discrete subgroup. Let N denote a maximal horospherical subgroup of G, and $P=MAN$ the minimal parabolic subgroup which is the normalizer of N. Let $\mathcal E$ denote the unique P-minimal subset of $\Gamma \backslash G$ and let $\mathcal E_0$ be a $P^\circ $-minimal subset. We consider a notion of a horospherical limit point in the Furstenberg boundary $ G/P $ and show that the following are equivalent for any $[g]\in \mathcal E_0$:
(1)$gP\in G/P$ is a horospherical limit point;
(2)$[g]NM$ is dense in $\mathcal E$;
(3)$[g]N$ is dense in $\mathcal E_0$.
The equivalence of items (1) and (2) is due to Dal’bo in the rank one case. We also show that unlike convex cocompact groups of rank one Lie groups, the $NM$-minimality of $\mathcal E$ does not hold in a general Anosov homogeneous space.
In this paper, we consider random dynamical systems formed by concatenating maps acting on the unit interval $[0,1]$ in an independent and identically distributed (i.i.d.) fashion. Considered as a stationary Markov process, the random dynamical system possesses a unique stationary measure $\nu $. We consider a class of non-square-integrable observables $\phi $, mostly of form $\phi (x)=d(x,x_0)^{-{1}/{\alpha }}$, where $x_0$ is a non-recurrent point (in particular a non-periodic point) satisfying some other genericity conditions and, more generally, regularly varying observables with index $\alpha \in (0,2)$. The two types of maps we concatenate are a class of piecewise $C^2$ expanding maps and a class of intermittent maps possessing an indifferent fixed point at the origin. Under conditions on the dynamics and $\alpha $, we establish Poisson limit laws, convergence of scaled Birkhoff sums to a stable limit law, and functional stable limit laws in both the annealed and quenched case. The scaling constants for the limit laws for almost every quenched realization are the same as those of the annealed case and determined by $\nu $. This is in contrast to the scalings in quenched central limit theorems where the centering constants depend in a critical way upon the realization and are not the same for almost every realization.
We define the topological multiplicity of an invertible topological system $(X,T)$ as the minimal number k of real continuous functions $f_1,\ldots , f_k$ such that the functions $f_i\circ T^n$, $n\in {\mathbb {Z}}$, $1\leq i\leq k,$ span a dense linear vector space in the space of real continuous functions on X endowed with the supremum norm. We study some properties of topological systems with finite multiplicity. After giving some examples, we investigate the multiplicity of subshifts with linear growth complexity.
We show that stationary time series can be uniformly approximated over all finite time intervals by mixing, non-ergodic, non-mean-ergodic, and periodic processes, and by codings of aperiodic processes. A corollary is that the ergodic hypothesis—that time averages will converge to their statistical counterparts—and several adjacent hypotheses are not testable in the non-parametric case. Further Baire category implications are also explored.
We show a new method of estimating the Hausdorff measure of a set from below. The method requires computing the subsequent closest return times of a point to itself.
We show that the measure of maximal entropy of every complex Hénon map is exponentially mixing of all orders for Hölder observables. As a consequence, the Central Limit Theorem holds for all Hölder observables.
We study monotone operators in reflexive Banach spaces that are invariant with respect to a group of suitable isometric isomorphisms, and we show that they always admit a maximal extension which preserves the same invariance. A similar result applies to Lipschitz maps in Hilbert spaces, thus providing an invariant version of Kirszbraun–Valentine extension theorem. We then provide a relevant application to the case of monotone operators in $L^{p}$-spaces of random variables which are invariant with respect to measure-preserving isomorphisms, proving that they always admit maximal dissipative extensions which are still invariant by measure-preserving isomorphisms. We also show that such operators are law invariant, a much stronger property which is also inherited by their resolvents, the Moreau–Yosida approximations, and the associated semigroup of contractions. These results combine explicit representation formulae for the maximal extension of a monotone operator based on self-dual Lagrangians and a refined study of measure-preserving maps in standard Borel spaces endowed with a nonatomic measure, with applications to the approximation of arbitrary couplings between measures by sequences of maps.
Let $\Sigma $ be a closed hyperbolic surface. We study, for fixed g, the asymptotics of the number of those periodic geodesics in $\Sigma $ having at most length L and which can be written as the product of g commutators. The basic idea is to reduce these results to being able to count critical realizations of trivalent graphs in $\Sigma $. In the appendix, we use the same strategy to give a proof of Huber’s geometric prime number theorem.
We study bracket words, which are a far-reaching generalization of Sturmian words, along Hardy field sequences, which are a far-reaching generalization of Piatetski-Shapiro sequences $\lfloor n^c \rfloor $. We show that sequences thus obtained are deterministic (that is, they have subexponential subword complexity) and satisfy Sarnak’s conjecture.
In this work, we study ergodic and dynamical properties of symbolic dynamical system associated to substitutions on an infinite countable alphabet. Specifically, we consider shift dynamical systems associated to irreducible substitutions which have well-established properties in the case of finite alphabets. Based on dynamical properties of a countable integer matrix related to the substitution, we obtain results on existence and uniqueness of shift invariant measures.
We show that every ergodic Davies generator associated to any 2D Kitaev’s quantum double model has a nonvanishing spectral gap in the thermodynamic limit. This validates rigorously the extended belief that those models are useless as self-correcting quantum memories, even in the non-abelian case. The proof uses recent ideas and results regarding the characterization of the spectral gap for parent Hamiltonians associated to Projected Entangled Pair States in terms of a bulk-boundary correspondence.
Katok [Lyapunov exponents, entropy and periodic points of diffeomorphisms. Publ. Math. Inst. Hautes Études Sci.51 (1980), 137–173] conjectured that every $C^{2}$ diffeomorphism f on a Riemannian manifold has the intermediate entropy property, that is, for any constant $c \in [0, h_{\mathrm {top}}(f))$, there exists an ergodic measure $\mu $ of f satisfying $h_{\mu }(f)=c$. In this paper, we obtain a conditional intermediate metric entropy property and two conditional intermediate Birkhoff average properties for basic sets of flows that characterize the refined roles of ergodic measures in the invariant ones. In this process, we establish a ‘multi-horseshoe’ entropy-dense property and use it to get the goal combined with conditional variational principles. We also obtain the same result for singular hyperbolic attractors.
To any k-dimensional subspace of $\mathbb {Q}^n$ one can naturally associate a point in the Grassmannian $\mathrm {Gr}_{n,k}(\mathbb {R})$ and two shapes of lattices of rank k and $n-k$, respectively. These lattices originate by intersecting the k-dimensional subspace and its orthogonal with the lattice $\mathbb {Z}^n$. Using unipotent dynamics, we prove simultaneous equidistribution of all of these objects under congruence conditions when $(k,n) \neq (2,4)$.
Katok’s special representation theorem states that any free ergodic measure- preserving $\mathbb {R}^{d}$-flow can be realized as a special flow over a $\mathbb {Z}^{d}$-action. It provides a multidimensional generalization of the ‘flow under a function’ construction. We prove the analog of Katok’s theorem in the framework of Borel dynamics and show that, likewise, all free Borel $\mathbb {R}^{d}$-flows emerge from $\mathbb {Z}^{d}$-actions through the special flow construction using bi-Lipschitz cocycles.