To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study infinite systems of mean field weakly coupled intermittent maps in the Pomeau–Manneville scenario. We prove that the coupled system admits a unique ‘physical’ stationary state, to which all absolutely continuous states converge. Moreover, we show that suitably regular states converge polynomially.
Inspired by a twist map theorem of Mather. we study recurrent invariant sets that are ordered like rigid rotation under the action of the lift of a bimodal circle map g to the k-fold cover. For each irrational in the rotation set’s interior, the collection of the k-fold ordered semi-Denjoy minimal sets with that rotation number contains a $(k-1)$-dimensional ball with the weak topology on their unique invariant measures. We also describe completely their periodic orbit analogs for rational rotation numbers. The main tool used is a generalization of a construction of Hedlund and Morse that generates symbolic analogs of these k-fold well-ordered invariant sets.
A left orderable monster is a finitely generated left orderable group all of whose fixed point-free actions on the line are proximal: the action is semiconjugate to a minimal action so that for every bounded interval I and open interval J, there is a group element that sends I into J. In his 2018 ICM address, Navas asked about the existence of left orderable monsters. By now there are several examples, all of which are finitely generated but not finitely presentable. We provide the first examples of left orderable monsters that are finitely presentable, and even of type $F_\infty $. These groups satisfy several additional properties separating them from the previous examples: they are not simple, they act minimally on the circle, and they have an infinite-dimensional space of homogeneous quasimorphisms. Our construction is flexible enough that it produces infinitely many isomorphism classes of finitely presented (and type $F_{\infty }$) left orderable monsters.
In this paper we study persistence features of topological entropy and periodic orbit growth of Hamiltonian diffeomorphisms on surfaces with respect to Hofer's metric. We exhibit stability of these dynamical quantities in a rather strong sense for a specific family of maps studied by Polterovich and Shelukhin. A crucial ingredient comes from enhancement of lower bounds for the topological entropy and orbit growth forced by a periodic point, formulated in terms of the geometric self-intersection number and a variant of Turaev's cobracket of the free homotopy class that it induces. Those bounds are obtained within the framework of Le Calvez and Tal's forcing theory.
The action on the trace space induced by a generic automorphism of a suitable finite classifiable ${\mathrm {C}^*}$-algebra is shown to be chaotic and weakly mixing. Model ${\mathrm {C}^*}$-algebras are constructed to observe the central limit theorem and other statistical features of strongly chaotic tracial actions. Genericity of finite Rokhlin dimension is used to describe $KK$-contractible stably projectionless ${\mathrm {C}^*}$-algebras as crossed products.
As a weak version of embedding flow, the problem of iterative roots is studied extensively in one dimension, especially in monotone case. There are few results in high dimensions because the constructive method dealing with monotone mappings is unavailable. In this paper, by introducing a kind of partial order, we define the monotonicity for two-dimensional mappings and then present some results on the existence of iterative roots for linear mappings, triangle-type mappings, and co-triangle-type mappings, respectively. Our theorems show that even the property of monotonicity for iterative roots of monotone mappings, which is a trivial result in one dimension, does not hold anymore in high dimensions. At the end of this paper, the problem of iterative roots for two well-known planar mappings, that is, Hénon mappings and coupled logistic mappings, are also discussed.
We define a new family of spectral invariants associated to certain Lagrangian links in compact and connected surfaces of any genus. We show that our invariants recover the Calabi invariant of Hamiltonians in their limit. As applications, we resolve several open questions from topological surface dynamics and continuous symplectic topology: We show that the group of Hamiltonian homeomorphisms of any compact surface with (possibly empty) boundary is not simple; we extend the Calabi homomorphism to the group of hameomorphisms constructed by Oh and Müller, and we construct an infinite-dimensional family of quasi-morphisms on the group of area and orientation preserving homeomorphisms of the two-sphere.
Our invariants are inspired by recent work of Polterovich and Shelukhin defining and applying spectral invariants, via orbifold Floer homology, for links composed of parallel circles in the two-sphere. A particular feature of our work is that it avoids the orbifold setting and relies instead on ‘classical’ Floer homology. This not only substantially simplifies the technical background but seems essential for some aspects (such as the application to constructing quasi-morphisms).
The purpose of this paper is to initiate a theory concerning the dynamics of asymptotically holomorphic polynomial-like maps. Our maps arise naturally as deep renormalizations of asymptotically holomorphic extensions of $C^r$ ($r>3$) unimodal maps that are infinitely renormalizable of bounded type. Here we prove a version of the Fatou–Julia–Sullivan theorem and a topological straightening theorem in this setting. In particular, these maps do not have wandering domains and their Julia sets are locally connected.
with initial data $(x_1,x_2,x_3)=(0,x,1)$, is eventually constant, and that its transit time and limit functions (of x) are unbounded and continuous, respectively. In this paper, we prove that for the slightly modified recursion
We prove an explicit characterization of the points in Thurston’s Master Teapot, which can be implemented algorithmically to test whether a point in $\mathbb {C}\times \mathbb {R}$ belongs to the complement of the Master Teapot. As an application, we show that the intersection of the Master Teapot with the unit cylinder is not symmetrical under reflection through the plane that is the product of the imaginary axis of $\mathbb {C}$ and $\mathbb {R}$.
We study recurrence in the real quadratic family and give a sufficient condition on the recurrence rate $(\delta _n)$ of the critical orbit such that, for almost every non-regular parameter a, the set of n such that $\vert F^n(0;a) \vert < \delta _n$ is infinite. In particular, when $\delta _n = n^{-1}$, this extends an earlier result by Avila and Moreira [Statistical properties of unimodal maps: the quadratic family. Ann. of Math. (2)161(2) (2005), 831–881].
We show that for a Salem number $\beta $ of degree d, there exists a positive constant $c(d)$ where $\beta ^m$ is a Parry number for integers m of natural density $\ge c(d)$. Further, we show $c(6)>1/2$ and discuss a relation to the discretized rotation in dimension $4$.
We prove a random Ruelle–Perron–Frobenius theorem and the existence of relative equilibrium states for a class of random open and closed interval maps, without imposing transitivity requirements, such as mixing and covering conditions, which are prevalent in the literature. This theorem provides the existence and uniqueness of random conformal and invariant measures with exponential decay of correlations, and allows us to expand the class of examples of (random) dynamical systems amenable to multiplicative ergodic theory and the thermodynamic formalism. Applications include open and closed non-transitive random maps, and a connection between Lyapunov exponents and escape rates through random holes. We are also able to treat random intermittent maps with geometric potentials.
We prove that for any non-degenerate dendrite D, there exist topologically mixing maps $F : D \to D$ and $f : [0, 1] \to [0, 1]$ such that the natural extensions (as known as shift homeomorphisms) $\sigma _F$ and $\sigma _f$ are conjugate, and consequently the corresponding inverse limits are homeomorphic. Moreover, the map f does not depend on the dendrite D and can be selected so that the inverse limit $\underleftarrow {\lim } (D,F)$ is homeomorphic to the pseudo-arc. The result extends to any finite number of dendrites. Our work is motivated by, but independent of, the recent result of the first and third author on conjugation of Lozi and Hénon maps to natural extensions of dendrite maps.
For the family of double standard maps $f_{a,b}=2x+a+({b}/{\pi }) \sin 2\pi x \pmod {1}$ we investigate the structure of the space of parameters a when $b=1$ and when $b\in [0,1)$. In the first case the maps have a critical point, but for a set of parameters $E_1$ of positive Lebesgue measure there is an invariant absolutely continuous measure for $f_{a,1}$. In the second case there is an open non-empty set $E_b$ of parameters for which the map $f_{a,b}$ is expanding. We show that as $b\nearrow 1$, the set $E_b$ accumulates on many points of $E_1$ in a regular way from the measure point of view.
Given $\beta \in (1,2]$, let $T_{\beta }$ be the $\beta $-transformation on the unit circle $[0,1)$ such that $T_{\beta }(x)=\beta x\pmod 1$. For each $t\in [0,1)$, let $K_{\beta }(t)$ be the survivor set consisting of all $x\in [0,1)$ whose orbit $\{T^{n}_{\beta }(x): n\ge 0\}$ never hits the open interval $(0,t)$. Kalle et al [Ergod. Th. & Dynam. Sys.40(9) (2020) 2482–2514] proved that the Hausdorff dimension function $t\mapsto \dim _{H} K_{\beta }(t)$ is a non-increasing Devil’s staircase. So there exists a critical value $\tau (\beta )$ such that $\dim _{H} K_{\beta }(t)>0$ if and only if $t<\tau (\beta )$. In this paper, we determine the critical value $\tau (\beta )$ for all $\beta \in (1,2]$, answering a question of Kalle et al (2020). For example, we find that for the Komornik–Loreti constant$\beta \approx 1.78723$, we have $\tau (\beta )=(2-\beta )/(\beta -1)$. Furthermore, we show that (i) the function $\tau : \beta \mapsto \tau (\beta )$ is left continuous on $(1,2]$ with right-hand limits everywhere, but has countably infinitely many discontinuities; (ii) $\tau $ has no downward jumps, with $\tau (1+)=0$ and $\tau (2)=1/2$; and (iii) there exists an open set $O\subset (1,2]$, whose complement $(1,2]\setminus O$ has zero Hausdorff dimension, such that $\tau $ is real-analytic, convex, and strictly decreasing on each connected component of O. Consequently, the dimension $\dim _{H} K_{\beta }(t)$ is not jointly continuous in $\beta $ and t. Our strategy to find the critical value $\tau (\beta )$ depends on certain substitutions of Farey words and a renormalization scheme from dynamical systems.
In this short and elementary note, we study some ergodic optimization problems for circle expanding maps. We first make an observation that if a function is not far from being convex, then its calibrated sub-actions are closer to convex functions in a certain effective way. As an application of this simple observation, for a circle doubling map, we generalize a result of Bousch saying that translations of the cosine function are uniquely optimized by Sturmian measures. Our argument follows the mainline of Bousch’s original proof, while some technical part is simplified by the observation mentioned above, and no numerical calculation is needed.
We consider skew-product maps over circle rotations $x\mapsto x+\alpha \;(\mod 1)$ with factors that take values in ${\textrm {SL}}(2,{\mathbb {R}})$. In numerical experiments, with $\alpha $ the inverse golden mean, Fibonacci iterates of maps from the almost Mathieu family exhibit asymptotic scaling behavior that is reminiscent of critical phase transitions. In a restricted setup that is characterized by a symmetry, we prove that critical behavior indeed occurs and is universal in an open neighborhood of the almost Mathieu family. This behavior is governed by a periodic orbit of a renormalization transformation. An extension of this transformation is shown to have a second periodic orbit as well, and we present some evidence that this orbit attracts supercritical almost Mathieu maps.
In this paper, we show that each element in the convex hull of the rotation set of a compact invariant chain transitive set is realized by a Birkhoff solution, which is an improvement of the fundamental lemma of T. Zhou and W.-X. Qin [Pseudo solutions, rotation sets, and shadowing rotations for monotone recurrence relations. Math. Z.297 (2021), 1673–1692] in the study of rotation sets for monotone recurrence relations. We then investigate the properties of rotation sets assuming the system has zero topological entropy. The rotation set for a Birkhoff recurrence class is a singleton and the forward and backward rotation numbers are identical for each solution in the same Birkhoff recurrence class. We also show the continuity of rotation numbers on the set of non-wandering points. If the rotation set is upper-stable, then we show that each boundary point is a rational number, and we also obtain a result of bounded deviation.
Given any rectangular polyhedron $3$-manifold $\mathcal {P}$ tiled with unit cubes, we find infinitely many explicit directions related to cubic algebraic numbers such that all half-infinite geodesics in these directions are uniformly distributed in $\mathcal {P}$.