We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Although piecewise isometries (PWIs) are higher-dimensional generalizations of one-dimensional interval exchange transformations (IETs), their generic dynamical properties seem to be quite different. In this paper, we consider embeddings of IET dynamics into PWI with a view to better understanding their similarities and differences. We derive some necessary conditions for existence of such embeddings using combinatorial, topological and measure-theoretic properties of IETs. In particular, we prove that continuous embeddings of minimal 2-IETs into orientation-preserving PWIs are necessarily trivial and that any 3-PWI has at most one non-trivially continuously embedded minimal 3-IET with the same underlying permutation. Finally, we introduce a family of 4-PWIs, with an apparent abundance of invariant non-smooth fractal curves supporting IETs, that limit to a trivial embedding of an IET.
It was recently shown in Gaidashev and Yampolsky [Golden mean Siegel disk universality and renormalization. Preprint, 2016, arXiv:1604.00717] that appropriately defined renormalizations of a sufficiently dissipative golden-mean semi-Siegel Hénon map converge super-exponentially fast to a one-dimensional renormalization fixed point. In this paper, we show that the asymptotic two-dimensional form of these renormalizations is universal and is parameterized by the average Jacobian. This is similar to the limit behavior of period-doubling renormalizations in the Hénon family considered in de Carvalho et al [Renormalization in the Hénon family, I: universality but non-rigidity. J. Stat. Phys.121 (5/6) (2006), 611–669]. As an application of our result, we prove that the boundary of the golden-mean Siegel disk of a dissipative Hénon map is non-smoothly rigid.
We construct a renormalization operator which acts on analytic circle maps whose critical exponent $\unicode[STIX]{x1D6FC}$ is not necessarily an odd integer $2n+1$, $n\in \mathbb{N}$. When $\unicode[STIX]{x1D6FC}=2n+1$, our definition generalizes cylinder renormalization of analytic critical circle maps by Yampolsky [Hyperbolicity of renormalization of critical circle maps. Publ. Math. Inst. Hautes Études Sci.96 (2002), 1–41]. In the case when $\unicode[STIX]{x1D6FC}$ is close to an odd integer, we prove hyperbolicity of renormalization for maps of bounded type. We use it to prove universality and $C^{1+\unicode[STIX]{x1D6FC}}$-rigidity for such maps.
We consider the quasi-periodic Fermi–Ulam ping-pong model with no diophantine condition on the frequencies and show that typically the set of initial data which leads to escaping orbits has Lebesgue measure zero.
The basis of this paper is the elementary observation that the n-step descendant distribution of any Galton–Watson process satisfies a discrete Smoluchowski coagulation equation with multiple coalescence. Using this we obtain simple necessary and sufficient criteria for the convergence of scaling limits of critical Galton–Watson processes in terms of scaled family-size distributions and a natural notion of convergence of Lévy triples. Our results provide a clear and natural interpretation, and an alternate proof, of the fact that the Lévy jump measure of certain continuous-state branching processes (CSBPs) satisfies a generalized Smoluchowski equation. (This result was previously proved by Bertoin and Le Gall (2006).) Our analysis shows that the nonlinear scaling dynamics of CSBPs become linear and purely dilatational when expressed in terms of the Lévy triple associated with the branching mechanism. We prove a continuity theorem for CSBPs in terms of the associated Lévy triples, and use our scaling analysis to prove the existence of universal critical Galton–Watson processes and CSBPs analogous to Doeblin's `universal laws'. Namely, these universal processes generate all possible critical and subcritical CSBPs as subsequential scaling limits. Our convergence results rely on a natural topology for Lévy triples and a continuity theorem for Bernstein transforms (Laplace exponents) which we develop in a self-contained appendix.
Matsumoto proved in, [Prime end rotation numbers of invariant separating continua of annular homeomorphisms, Proc. Amer. Math. Soc. 140(3) (2012), 839–845.] that the prime end rotation numbers associated to an invariant annular continuum are contained in its rotation set. An alternative proof of this fact using only simple planar topology is presented.
Consider a $C^{2}$ family of mixing $C^{4}$ piecewise expanding unimodal maps $t\in [a,b]\mapsto f_{t}$, with a critical point $c$, that is transversal to the topological classes of such maps. Given a Lipchitz observable $\unicode[STIX]{x1D719}$ consider the function
where $\unicode[STIX]{x1D707}_{t}$ is the unique absolutely continuous invariant probability of $f_{t}$. Suppose that $\unicode[STIX]{x1D70E}_{t}>0$ for every $t\in [a,b]$, where
where $\unicode[STIX]{x1D6F9}(t)$ is a dynamically defined function and $m$ is the Lebesgue measure on $[a,b]$, normalized in such way that $m([a,b])=1$. As a consequence, we show that ${\mathcal{R}}_{\unicode[STIX]{x1D719}}$ is not a Lipchitz function on any subset of $[a,b]$ with positive Lebesgue measure.
A classical article by Misiurewicz and Ziemian (J. Lond. Math. Soc.40(2) (1989), 490–506) classifies the elements in Homeo$_{0}(\mathbf{T}^{2})$ by their rotation set $\unicode[STIX]{x1D70C}$, according to wether $\unicode[STIX]{x1D70C}$ is a point, a segment or a set with nonempty interior. A recent classification of nonwandering elements in Homeo$_{0}(\mathbf{T}^{2})$ by Koropecki and Tal was given in (Invent. Math.196 (2014), 339–381), according to the intrinsic underlying ambient space where the dynamics takes place: planar, annular and strictly toral maps. We study the link between these two classifications, showing that, even abroad the nonwandering setting, annular maps are characterized by rotation sets which are rational segments. Also, we obtain information on the sublinear diffusion of orbits in the—not very well understood—case that $\unicode[STIX]{x1D70C}$ has nonempty interior.
We show that the space of actions of every finitely generated, nilpotent group by $C^1$ orientation-preserving diffeomorphisms of the circle is path-connected. This is done via a general result that allows any given action on the interval to be connected to the trivial one by a continuous path of topological conjugates.
Consider a map of class ${C}^{3} $ with nonflat critical points and with all periodic points hyperbolic repelling. We show that the ‘backward contracting condition’ implies the summability condition. This result is the converse of Theorem 3 of Bruin et al. [‘Large derivatives, backward contraction and invariant densities for interval maps’, Invent. Math.172 (2008), 509–533].
Very few things are known about the curves that are at the boundary of the instability zones of symplectic twist maps. It is known that in general they have an irrational rotation number and that they cannot be KAM curves. We address the following questions. Can they be very smooth? Can they be non-${C}^{1} $?
Can they have a Diophantine or a Liouville rotation number? We give a partial answer for ${C}^{1} $ and ${C}^{2} $ twist maps.
In Theorem 1, we construct a ${C}^{2} $ symplectic twist map $f$ of the annulus that has an essential invariant curve $\Gamma $ such that
$\bullet $$\Gamma $ is not differentiable;
$\bullet $ the dynamics of ${f}_{\vert \Gamma } $ is conjugated to the one of a Denjoy counter-example;
$\bullet $$\Gamma $ is at the boundary of an instability zone for $f$.
Using the Hayashi connecting lemma, we prove in Theroem 2 that any symplectic twist map restricted to an essential invariant curve can be embedded as the dynamics along a boundary of an instability zone for some ${C}^{1} $ symplectic twist map.
Nous montrons des résultats d’existence de points fixes communs pour des homéomorphismes du plan ${ \mathbb{R} }^{2} $ ou la sphère ${ \mathbb{S} }^{2} $, qui commutent deux à deux et préservent une mesure de probabilité. Par exemple, nous montrons que des ${C}^{1} $-difféomorphismes ${f}_{1} , \ldots , {f}_{n} $ de ${ \mathbb{S} }^{2} $ suffisamment proches de l’identité, qui commutent deux à deux, et qui préservent une mesure de probabilité dont le support n’est pas réduit à un point, ont au moins deux points fixes communs.
Let A be an n×m matrix with real entries. Consider the set BadA of x∈[0,1)n for which there exists a constant c(x)>0 such that for any q∈ℤm the distance between x and the point {Aq} is at least c(x)|q|−m/n. It is shown that the intersection of BadA with any suitably regular fractal set is of maximal Hausdorff dimension. The linear form systems investigated in this paper are natural extensions of irrational rotations of the circle. Even in the latter one-dimensional case, the results obtained are new.
We prove that if f:I=[0,1]→I is a C3-map with negative Schwarzian derivative, nonflat critical points and without wild attractors, then exactly one of the following alternatives must occur: (i) R(f) has full Lebesgue measure λ; (ii) both S(f) and Scramb(f) have positive measure. Here R(f), S(f), and Scramb(f) respectively stand for the set of approximately periodic points of f, the set of sensitive points to the initial conditions of f, and the two-dimensional set of points (x,y) such that {x,y} is a scrambled set for f.Also, we show that if f is piecewise monotone and has no wandering intervals, then either λ(R(f))=1 or λ(S(f))>0, and provide examples of maps g,h of this type satisfying S(g)=S(h)=I such that, on the one hand, λ(R(g))=0and λ2 (Scramb (g))=0 , and, on the other hand, λ(R(h))=1 .