To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study fast approximation of integrals with respect to stationary probability measures associated to iterated function systems on the unit interval. We provide an algorithm for approximating the integrals under certain conditions on the iterated function system and on the function that is being integrated. We apply this technique to estimate Hausdorff moments, Wasserstein distances and Lyapunov exponents of stationary probability measures.
Let $\unicode[STIX]{x1D6E4}$ denote the mapping class group of the plane minus a Cantor set. We show that every action of $\unicode[STIX]{x1D6E4}$ on the circle is either trivial or semiconjugate to a unique minimal action on the so-called simple circle.
We study the asymptotic dynamics of piecewise-contracting maps defined on a compact interval. For maps that are not necessarily injective, but have a finite number of local extrema and discontinuity points, we prove the existence of a decomposition of the support of the asymptotic dynamics into a finite number of minimal components. Each component is either a periodic orbit or a minimal Cantor set and such that the $\unicode[STIX]{x1D714}$-limit set of (almost) every point in the interval is exactly one of these components. Moreover, we show that each component is the $\unicode[STIX]{x1D714}$-limit set, or the closure of the orbit, of a one-sided limit of the map at a discontinuity point or at a local extremum.
We consider multimodal maps with holes and study the evolution of the open systems with respect to equilibrium states for both geometric and Hölder potentials. For small holes, we show that a large class of initial distributions share the same escape rate and converge to a unique absolutely continuous conditionally invariant measure; we also prove a variational principle connecting the escape rate to the pressure on the survivor set, with no conditions on the placement of the hole. Finally, introducing a weak condition on the centre of the hole, we prove scaling limits for the escape rate for holes centred at both periodic and non-periodic points, as the diameter of the hole goes to zero.
In L. W. Flinn’s PhD thesis published in 1972, the author conjectured that weakly expansive flows are also expansive flows. In this paper we use the horocycle flow on compact Riemann surfaces of constant negative curvature to show that Flinn’s conjecture is not true.
We study the continuity of topological entropy of general diffeomorphisms on line. First, we prove that the entropy map is continuous with respect to the strong $C^{0}$-topology on the union of uniformly topologically hyperbolic diffeomorphisms contained in $\text{Diff}_{0}^{r}(\mathbb{R})$ (whose first derivative is uniformly away from zero), which is a $C^{0}$-open and $C^{r}$-dense subset of $\text{Diff}_{0}^{r}(\mathbb{R})$, $r=1,2,\ldots ,\infty$, and $\unicode[STIX]{x1D714}$ (real analytic). Second, we give some examples where entropy map is not continuous. Finally, we prove some results on the continuity of entropy of general diffeomorphisms on the (real) line.
In this survey we prove the sharpest results on the loss of Sobolev regularity for solutions of the cohomological equation for translation flows on translation surfaces, available to the methods developed by the author in Forni [Solutions of the cohomological equation for area-preserving flows on compact surfaces of higher genus. Ann. of Math. (2)146(2) (1997), 295–344] and Forni [Deviation of ergodic averages for area-preserving flows on surfaces of higher genus. Ann. of Math. (2)155(1) (2002), 1–103]. The paper was mostly written between 2005 and 2006 while the author was at the University of Toronto, Canada, and was posted on arXiv in July 2007 [Forni. Sobolev regularity of solutions of the cohomological equation. Preprint, 2007, arXiv:0707.0940v2]. In an updated introduction we describe our results, taking into account later work on the problem and relevant recent progress in the field of Teichmüller dynamics, interval exchange transformations and translation flows.
We begin by defining a homoclinic class for homeomorphisms. Then we prove that if a topological homoclinic class Λ associated with an area-preserving homeomorphism f on a surface M is topologically hyperbolic (i.e. has the shadowing and expansiveness properties), then Λ = M and f is an Anosov homeomorphism.
We extend the unpublished work of Handel and Miller on the classification, up to isotopy, of endperiodic automorphisms of surfaces. We give the Handel–Miller construction of the geodesic laminations, give an axiomatic theory for pseudo-geodesic laminations, show that the geodesic laminations satisfy the axioms, and prove that pseudo-geodesic laminations satisfying our axioms are ambiently isotopic to the geodesic laminations. The axiomatic approach allows us to show that the given endperiodic automorphism is isotopic to a smooth endperiodic automorphism preserving smooth laminations ambiently isotopic to the original ones. Using the axioms, we also prove the ‘transfer theorem’ for foliations of 3-manifolds, namely that, if two depth-one foliations ${\mathcal{F}}$ and ${\mathcal{F}}^{\prime }$ are transverse to a common one-dimensional foliation ${\mathcal{L}}$ whose monodromy on the non-compact leaves of ${\mathcal{F}}$ exhibits the nice dynamics of Handel–Miller theory, then ${\mathcal{L}}$ also induces monodromy on the non-compact leaves of ${\mathcal{F}}^{\prime }$ exhibiting the same nice dynamics. Our theory also applies to surfaces with infinitely many ends.
We consider closed orientable surfaces $S$ of genus $g>1$ and homeomorphisms $f:S\rightarrow S$ isotopic to the identity. A set of hypotheses is presented, called a fully essential system of curves $\mathscr{C}$ and it is shown that under these hypotheses, the natural lift of $f$ to the universal cover of $S$ (the Poincaré disk $\mathbb{D}$), denoted by $\widetilde{f},$ has complicated and rich dynamics. In this context, we generalize results that hold for homeomorphisms of the torus isotopic to the identity when their rotation sets contain zero in the interior. In particular, for $C^{1+\unicode[STIX]{x1D716}}$ diffeomorphisms, we show the existence of rotational horseshoes having non-trivial displacements in every homotopical direction. As a consequence, we found that the homological rotation set of such an $f$ is a compact convex subset of $\mathbb{R}^{2g}$ with maximal dimension and all points in its interior are realized by compact $f$-invariant sets and by periodic orbits in the rational case. Also, $f$ has uniformly bounded displacement with respect to rotation vectors in the boundary of the rotation set. This implies, in case where $f$ is area preserving, that the rotation vector of Lebesgue measure belongs to the interior of the rotation set.
Switched server systems are mathematical models of manufacturing, traffic and queueing systems that have being studied since the early 1990s. In particular, it is known that typically the dynamics of such systems is asymptotically periodic: each orbit of the system converges to one of its finitely many limit cycles. In this article, we provide an explicit example of a switched server system with exotic behaviour: each orbit of the system converges to the same Cantor attractor. To accomplish this goal, we bring together recent advances in the understanding of the topological dynamics of piecewise contractions and interval exchange transformations (IETs) with flips. The ultimate result is a switched server system whose Poincaré map is semiconjugate to a minimal and uniquely ergodic IET with flips.
It is proved that a symplectic twist map of the cotangent bundle $T^{\ast }\mathbb{T}^{d}$ of the $d$-dimensional torus that is without conjugate points is $C^{0}$-integrable, that is $T^{\ast }\mathbb{T}^{d}$ is foliated by a family of invariant $C^{0}$ Lagrangian graphs.
An elastic graph is a graph with an elasticity associated to each edge. It may be viewed as a network made out of ideal rubber bands. If the rubber bands are stretched on a target space there is an elastic energy. We characterize when a homotopy class of maps from one elastic graph to another is loosening, that is, decreases this elastic energy for all possible targets. This fits into a more general framework of energies for maps between graphs.
Quasi-Sturmian words, which are infinite words with factor complexity eventually $n+c$ share many properties with Sturmian words. In this article, we study the quasi-Sturmian colorings on regular trees. There are two different types, bounded and unbounded, of quasi-Sturmian colorings. We obtain an induction algorithm similar to Sturmian colorings. We distinguish them by the recurrence function.
An isotopic to the identity map of the 2-torus, that has zero rotation vector with respect to an invariant ergodic probability measure, has a fixed point by a theorem of Franks. We give a version of this result for nilpotent subgroups of isotopic to the identity diffeomorphisms of the 2-torus. In such a context we guarantee the existence of global fixed points for nilpotent groups of irrotational diffeomorphisms. In particular, we show that the derived group of a nilpotent group of isotopic to the identity diffeomorphisms of the 2-torus has a global fixed point.
Let $\unicode[STIX]{x1D6FD}>1$ be an integer or, generally, a Pisot number. Put $T(x)=\{\unicode[STIX]{x1D6FD}x\}$ on $[0,1]$ and let $S:[0,1]\rightarrow [0,1]$ be a piecewise linear transformation whose slopes have the form $\pm \unicode[STIX]{x1D6FD}^{m}$ with positive integers $m$. We give a sufficient condition for $T$ and $S$ to have the same generic points. We also give an uncountable family of maps which share the same set of generic points.
We study continuous countably (strictly) monotone maps defined on a tame graph, i.e. a special Peano continuum for which the set containing branch points and end points has countable closure. In our investigation we confine ourselves to the countable Markov case. We show a necessary and sufficient condition under which a locally eventually onto, countably Markov map $f$ of a tame graph $G$ is conjugate to a map $g$ of constant slope. In particular, we show that in the case of a Markov map $f$ that corresponds to a recurrent transition matrix, the condition is satisfied for a constant slope $e^{h_{\text{top}}(f)}$, where $h_{\text{top}}(f)$ is the topological entropy of $f$. Moreover, we show that in our class the topological entropy $h_{\text{top}}(f)$ is achievable through horseshoes of the map $f$.
We show that the stable and unstable sets of non-uniformly hyperbolic horseshoes arising in some heteroclinic bifurcations of surface diffeomorphisms have the value conjectured in a previous work by the second and third authors of the present paper. Our results apply to first heteroclinic bifurcations associated with horseshoes with Hausdorff dimension ${<}22/21$ of conservative surface diffeomorphisms.
We study 2-generated subgroups $\langle f,g\rangle <\operatorname{Homeo}^{+}(I)$ such that $\langle f^{2},g^{2}\rangle$ is isomorphic to Thompson’s group $F$, and such that the supports of $f$ and $g$ form a chain of two intervals. We show that this class contains uncountably many isomorphism types. These include examples with non-abelian free subgroups, examples which do not admit faithful actions by $C^{2}$ diffeomorphisms on 1-manifolds, examples which do not admit faithful actions by $PL$ homeomorphisms on an interval, and examples which are not finitely presented. We thus answer questions due to Brin. We also show that many relatively uncomplicated groups of homeomorphisms can have very complicated square roots, thus establishing the behavior of square roots of $F$ as part of a general phenomenon among subgroups of $\operatorname{Homeo}^{+}(I)$.
For a non-generic, yet dense subset of $C^{1}$ expanding Markov maps of the interval we prove the existence of uncountably many Lyapunov optimizing measures which are ergodic, fully supported and have positive entropy. These measures are equilibrium states for some Hölder continuous potentials. We also prove the existence of another non-generic dense subset for which the optimizing measure is unique and supported on a periodic orbit. A key ingredient is a new $C^{1}$ perturbation theorem which allows us to interpolate between expanding Markov maps and the shift map on a finite number of symbols.