To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let M be an invariant subspace of L2 (T2) on the bidisc. V1 and V2 denote the multiplication operators on M by coordinate functions z and ω, respectively. In this paper we study the relation between M and the commutator of V1 and , For example, M is studied when the commutator is self-adjoint or of finite rank.
In this paper we begin with a short, direct proof that the Banach algebra B(l1) is not amenable. We continue by showing that various direct sums of matrix algebras are not amenable either, for example the direct sum of the finite dimensional algebras is no amenable for 1 ≤ p ≤ ∞, p ≠ 2. Our method of proof naturally involves free group algebras, (by which we mean certain subalgebras of B(X) for some space X with symmetric basis—not necessarily X = l2) and we introduce the notion of ‘relative amenability’ of these algebras.
Let 1≤p <∞ and 1/p+1/q = 1. If φ ∈ Lq, we denote by Tφ the functional defined on the Hardy space Hp by . A function f in Hp, which satisfies Tpφ(f) = ‖Tpφ‖ and ‖f‖p ≤ 1, is called an extremal function. Also, φ is called an extremal kernel when ‖φ‖q =‖Tpφ‖. In this paper, using the results in the case of p = 1, we study extremal kernel and extremal functions for p > 1.
We develop a theory of ergodicity for unbounded functions ø: J → X, where J is a subsemigroup of a locally compact abelian group G and X is a Banach space. It is assumed that ø is continuous and dominated by a weight w defined on G. In particular, we establish total ergodicity for the orbits of an (unbounded) strongly continuous representation T: G → L(X) whose dual representation has no unitary point spectrum. Under additional conditions stability of the orbits follows. To study spectra of functions, we use Beurling algebras L1w(G) and obtain new characterizations of their maximal primary ideals, when w is non-quasianalytic, and of their minimal primary ideals, when w has polynomial growth. It follows that, relative to certain translation invariant function classes , the reduced Beurling spectrum of ø is empty if and only if ø ∈ . For the zero class, this is Wiener's tauberian theorem.
The second dual of the vector-valued function space C0(S, A) is characterized in terms of generalized functions in the case where A* and A** have the Radon-Nikodým property. As an application we present a simple proof that C0 (S, A) is Arens regular if and only if A is Arens regular in this case. A representation theorem of the measure μh is given, where , h ∈ L∞ (|μ;|, A**) and μh is defined by the Arens product.
Let A be a uniform algebra and M(A) the maximal ideal space of A. A sequence {an} in M(A) is called l1-interpolating if for every sequence (αn) in l1 there exists a function f in A such that f (an) = αn for all n. In this paper, an l1-interpolating sequence is studied for an arbitrary uniform algebra. For some special uniform algebras, an l1-interpolating sequence is equivalent to a familiar l-interpolating sequence. However, in general these two interpolating sequences may be different from each other.
Gelfand-type duality results can be obtained for locally convex algebras using a quasitopological structure on the spectrum of an algebra (as opposed to the topologies traditionally considered). In this way, the duality between (commutative, with identity) C*-algebras and compact spaces can be extended to pro-C*-algebras and separated quasitopologies. The extension is provided by a functional representation of an algebra A as the algebra of all continuous numerical functions on a quasitopological space. The first half of the paper deals with uniform spaces and quasitopologies, and has independent interest.
Let φ be a continuous nonzero homomorphism of the convolution algebra L1loc(R+) and also the unique extension of this homomorphism to Mloc(R+). We show that the map φis continuous in the weak* and strong opertor topologies on Mloc, considered as the dual space of Cc(R+) and as the multiplier algebra of L1loc. Analogous results are proved for homomorphism from L1 [0, a) to L1 [0, b). For each convolution algebra L1 (ω1), φ restricts to a continuous homomorphism from some L1 (ω1) to some L1 (ω2), and, for each sufficiently large L1 (ω2), φ restricts to a continuous homomorphism from some L1 (ω1) to L1 (ω2). We also determine which continuous homomorphisms between weighted convolution algebras extend to homomorphisms of L1loc. We also prove results on convergent nets, continuous semigroups, and bounded sets in Mloc that we need in our study of homomorphisms.
Let W+ denote the Banach algebra of all absolutely convergent Taylor series in the open unit disc. We characterize the finitely generated closed and prime ideals in W+. Finally, we solve a problem of Rubel and McVoy by showing that W+ is not coherent.
Let G be a locally compact group G (which may be non-abelian) and Ap(G) the p-Fourier algebra of Herz (1971). This paper is concerned with the Fourier algebra Al, p(G) = Ap(G) ∩ L1(G) and various relations that exist between Al, p(G), Ap(G) and G.
Closed ideals in A(G) with bounded approximate identities are characterized for amenable [SIN]-groups and arbitrary discrete groups. This extends a result of Liu, van Rooij and Wang for abelian groups.
The concept of semi-bounded generalized hypergroups (SBG hypergroups) is developed. These hypergroups are more special than generalized hypergroups introduced by Obata and Wildberger and more general than discrete hypergroups or even discrete signed hypergroups. The convolution of measures and functions is studied. In the case of commutativity we define the dual objects and prove some basic theorems of Fourier analysis. Furthermore, we investigate the relationship between orthogonal polynomials and generalized hypergroups. We discuss the Jacobi polynomials as an example.
We derive some specific inequalities involving absolutely continuous functions and relate them to a norm inequality arising from Banach algebras of functions having bounded k th variation.
Let S(n) be a unilateral shift operator on a Hilbert space of multiplicity n. In this paper, we prove a generalization of the theorem that if S(1) is unitarily equivalent to an operator matrix form relative to a decomposition ℳ ⊕ N, then E is in a certain class C0 which will be defined below.
Let K and X be compact plane sets such that . Let P(K) be the uniform closure of polynomials on K, let R(K) be the uniform closure of rational functions on K with no poles in K and let A(K) be the space of continuous functions on K which are analytic on int(K). Define P(X,K),R(X,K) and A(X,K) to be the set of functions in C(X) whose restriction to K belongs to P(K),R(K) and A(K), respectively. Let S0(A) denote the set of peak points for the Banach function algebra A on X. Let S and T be compact subsets of X. We extend the Hartogs–Rosenthal theorem by showing that if the symmetric difference SΔT has planar measure zero, then R(X,S)=R(X,T) . Then we show that the following properties are equivalent:
(i)R(X,S)=R(X,T) ;
(ii) and ;
(iii)R(K)=C(K)for every compact set ;
(iv) for every open set U in ℂ ;
(v) for every p∈X there exists an open disk Dp with centre p such that
We prove an extension of Vitushkin’s theorem by showing that the following properties are equivalent:
(i)A(X,S)=R(X,T) ;
(ii) for every closed disk in ℂ ;
(iii) for every p∈X there exists an open disk Dp with centre p such that
Let M be a forward-shift-invariant subspace and N a backward-shift-invariant subspace in the Hardy space H2 on the bidisc. We assume that . Using the wandering subspace of M and N, we study the relations between M and N. Moreover we study M and N using several natural operators defined by shift operators on H2.