We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
On a separable C*-algebra A every (completely) bounded map which preserves closed two-sided ideals can be approximated uniformly by elementary operators if and only if A is a finite direct sum of C*-algebras of continuous sections vanishing at ∞ of locally trivial C*-bundles of finite type.
Let ℳ be a von Neumann algebra acting on a Hilbert space and let be a von Neumann subalgebra of ℳ. If is singular in for every Hilbert space , is said to be completely singular in ℳ. We prove that if is a singular abelian von Neumann subalgebra or if is a singular subfactor of a type-II1 factor ℳ, then is completely singular in ℳ. is separable, we prove that is completely singular in ℳ if and only if, for every θ∈Aut(′) such that θ(X)=X for all X ∈ ℳ′, θ(Y)=Y for all Y∈′. As the first application, we prove that if ℳ is separable (with separable predual) and is completely singular in ℳ, then is completely singular in for every separable von Neumann algebra . As the second application, we prove that if 1 is a singular subfactor of a type-II1 factor ℳ1 and 2 is a completely singular von Neumann subalgebra of ℳ2, then is completely singular in .
In this article, we define lattice graphs (which generalise ultragraphs) as well as their Cuntz–Krieger families and C*-algebras. We will give a thorough study in the special case of lattice atomic graphs.
In this paper, we construct the unique (up to isomorphism) extension algebra, denoted by E∞, of the Cuntz algebra 𝒪∞ by the C*-algebra of compact operators on a separable infinite-dimensional Hilbert space. We prove that two unital monomorphisms from E∞ to a unital purely infinite simple C*-algebra are approximately unitarily equivalent if and only if they induce the same homomorphisms in K-theory.
Consider a projective limit G of finite groups Gn. Fix a compatible family δn of coactions of the Gn on a C*-algebra A. From this data we obtain a coaction δ of G on A. We show that the coaction crossed product of A by δ is isomorphic to a direct limit of the coaction crossed products of A by the δn. If A=C*(Λ) for some k-graph Λ, and if the coactions δn correspond to skew-products of Λ, then we can say more. We prove that the coaction crossed product of C*(Λ) by δ may be realized as a full corner of the C*-algebra of a (k+1)-graph. We then explore connections with Yeend’s topological higher-rank graphs and their C*-algebras.
In this paper we prove that, for a type-II1 factor N with a Cartan maximal abelian subalgebra, the Hochschild cohomology groups Hn(N,N)=0 for all n≥1. This generalizes the result of Sinclair and Smith, who proved this for all N having a separable predual.
Let (N,ℝ,θ) be a centrally ergodic W* dynamical system. When N is not a factor, we show that for each nonzero real number t, the crossed product induced by the time t automorphism θt is not a factor if and only if there exist a rational number r and an eigenvalue s of the restriction of θ to the center of N, such that rst=2π. In the C* setting, minimality seems to be the notion corresponding to central ergodicity. We show that if (A,ℝ,α) is a minimal unital C* dynamical system and A is not simple, then, for each nonzero real number t, the crossed product induced by the time t automorphism αt is not simple if there exist a rational number r and an eigenvalue s of the restriction of α to the center of A, such that rst=2π. The converse is true if, in addition, A is commutative or prime.
Suppose that σ:𝔐→𝔐 is an ultraweakly continuous surjective *-linear mapping and d:𝔐→𝔐 is an ultraweakly continuous *-σ-derivation such that d(I) is a central element of 𝔐. We provide a Kadison–Sakai-type theorem by proving that ℌ can be decomposed into and d can be factored as the form , where δ:𝔐→𝔐 is an inner *-σ𝔎-derivation, Z is a central element, 2τ=2σ𝔏 is a *-homomorphism, and σ𝔎 and σ𝔏 stand for compressions of σ to 𝔎 and 𝔏 , respectively.
Given two unital continuous C*-bundles, A and B, over the same compact Hausdorff base space X, we study the continuity properties of their different amalgamated free products over C(X).
We analyse Hecke pairs (G,H) and the associated Hecke algebra when G is a semi-direct product N ⋊ Q and H = M ⋊ R for subgroups M ⊂ N and R ⊂ Q with M normal in N. Our main result shows that, when (G,H) coincides with its Schlichting completion and R is normal in Q, the closure of in C*(G) is Morita–Rieffel equivalent to a crossed product I⋊βQ/R, where I is a certain ideal in the fixed-point algebra C*(N)R. Several concrete examples are given illustrating and applying our techniques, including some involving subgroups of GL(2,K) acting on K2, where K = ℚ or K = ℤ[p−1]. In particular we look at the ax + b group of a quadratic extension of K.
Vincent Lafforgue's bivariant K-theory for Banach algebras is invariant in the second variable under a rather general notion of Morita equivalence. In particular, the ordinary topological K-theory for Banach algebras is invariant under Morita equivalences.
It is shown that the complexification of a positive linear map on a real C*-algebra need not be positive whereas the complexification of a completely positive linear map is completely positive. It is further shown that a real C*-algebra is amenable if and only if its complexification is amenable and that a completely positive linear map is amenable if and only if its complexification is. Finally, a real version of the Choi–Effros lifting theorem is established.
Let A be a C*-algebra, and let X be a Banach A-bimodule. Johnson [B. E. Johnson, ‘Local derivations on C*-algebras are derivations’, Trans. Amer. Math. Soc. 353 (2000), 313–325] showed that local derivations from A into X are derivations. We extend this concept of locality to the higher cohomology of a C*-algebra and show that, for every , bounded local n-cocycles from A(n) into X are n-cocycles.
Let be a higher rank Exel–Laca algebra generated by an alphabet . If contains d commuting isometries corresponding to rank d and the transition matrices do not have finite rows, then is trivial and is isomorphic to K0 of the abelian subalgebra of generated by the source projections of .
Every directed graph defines a Hilbert space and a family of weighted shifts that act on the space. We identify a natural notion of periodicity for such shifts and study their C* -algebras. We prove the algebras generated by all shifts of a fixed period are of Cuntz-Krieger and Toeplitz-Cuntz-Krieger type. The limit C* -algebras determined by an increasing sequence of positive integers, each dividing the next, are proved to be isomorphic to Cuntz-Pimsner algebras and the linking maps are shown to arise as factor maps. We derive a characterization of simplicity and compute the K-groups for these algebras. We prove a classification theorem for the class of algebras generated by simple loop graphs.
A λ-graph system is a labeled Bratteli diagram with shift transformation. It is a generalization of finite labeled graphs and presents a subshift. In Doc. Math. 7 (2002) 1–30, the author constructed a C*-algebra O£ associated with a λ-graph system £ from a graph theoretic view-point. If a λ-graph system comes from a finite labeled graph, the algebra becomes a Cuntz-Krieger algebra. In this paper, we prove that there is a bijective correspondence between the lattice of all saturated hereditary subsets of £ and the lattice of all ideals of the algebra O£, under a certain condition on £ called (II). As a result, the class of the C*-algebras associated with λ-graph systems under condition (II) is closed under quotients by its ideals.
Given a representation θ: A → B(H) of a Banach algebra A on a Hilbert space H, H is said to have the reduction property as an A—module if every closed invariant subspace of H is complemented by a closed invariant subspace; A has the total reduction property if for every representation θ: A → B(H), H has the reduction property.
We show that a C*—algebra has the total reduction property if and only if all its representations are similar to *—representations. The question of whether all C*-algebras have this property is the famous ‘similarity problem’ of Kadison.
We conjecture that non-self-adjoint operator algebras with the total reduction property are always isomorphic to C*-algebras, and prove this result for operator algebras consisting of compact operators.
Let A be a C*-algebra and K the C*-algebra of all compact operators on a countably infinite dimensional Hilbert space. In this note, we shall show that there is an isomorphism of a semigroup of equivalence classes of certain partial automorphisms of A ⊗ K onto a semigroup of equivalence classes of certain countably generated A-A-Hilbert bimodules.
For a locally finite directed graph E, it is known that the graph C*-algebra C*(E) has real rank zero if and only if the graph E satisfies the loop condition (K). In this paper we extend this to an arbitrary directed graph case using the desingularization of a graph due to Drinen and Tomforde