To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the space of irreducible representations of a crossed product ${C}^{\ast } $-algebra ${\mathop{A\rtimes }\nolimits}_{\sigma } G$, where $G$ is a finite group. We construct a space $\widetilde {\Gamma } $ which consists of pairs of irreducible representations of $A$ and irreducible projective representations of subgroups of $G$. We show that there is a natural action of $G$ on $\widetilde {\Gamma } $ and that the orbit space $G\setminus \widetilde {\Gamma } $ corresponds bijectively to the dual of ${\mathop{A\rtimes }\nolimits}_{\sigma } G$.
We show that if $A$ and $H$ are Hopf algebras that have equivalent tensor categories of comodules, then one can transport what we call a free Yetter–Drinfeld resolution of the counit of $A$ to the same kind of resolution for the counit of $H$, exhibiting in this way strong links between the Hochschild homologies of $A$ and $H$. This enables us to obtain a finite free resolution of the counit of $\mathcal {B}(E)$, the Hopf algebra of the bilinear form associated with an invertible matrix $E$, generalizing an earlier construction of Collins, Härtel and Thom in the orthogonal case $E=I_n$. It follows that $\mathcal {B}(E)$ is smooth of dimension 3 and satisfies Poincaré duality. Combining this with results of Vergnioux, it also follows that when $E$ is an antisymmetric matrix, the $L^2$-Betti numbers of the associated discrete quantum group all vanish. We also use our resolution to compute the bialgebra cohomology of $\mathcal {B}(E)$in the cosemisimple case.
C*-algebras form a 2-category with *-homomorphisms or correspondences as morphisms and unitary intertwiners as 2-morphisms. We use this structure to define weak actions of 2-categories, weakly equivariant maps between weak actions and modifications between weakly equivariant maps. In the group case, we identify the resulting notions with known ones, including Busby–Smith twisted actions and the equivalence of such actions, covariant representations and saturated Fell bundles. For 2-groups, weak actions combine twists in the sense of Green, and Busby and Smith.
The Packer–Raeburn Stabilization Trick implies that all Busby–Smith twisted group actions of locally compact groups are Morita equivalent to classical group actions. We generalize this to actions of strict 2-groupoids.
We prove that every topologically amenable locally compact quantum group is amenable. This answers an open problem by Bédos and Tuset [‘Amenability and co-amenability for locally compact quantum groups’, Internat. J. Math.14 (2003), 865–884].
Cuntz and Li have defined a C*-algebra associated to any integral domain, using generators and relations, and proved that it is simple and purely infinite and that it is stably isomorphic to a crossed product of a commutative C*-algebra. We give an approach to a class of C*-algebras containing those studied by Cuntz and Li, using the general theory of C*-dynamical systems associated to certain semidirect product groups. Even for the special case of the Cuntz–Li algebras, our development is new.
We prove that, under certain conditions, uniform weak mixing (to zero) of the bounded sequences in Banach space implies uniform weak mixing of their tensor product. Moreover, we prove that ergodicity of tensor product of the sequences in Banach space implies their weak mixing. As applications of the results obtained, we prove that the tensor product of uniquely E-weak mixing C*-dynamical systems is also uniquely E-weak mixing.
Let A and B be C*-algebras. We prove the slice map conjecture for ideals in the operator space projective tensor product . As an application, a characterization of the prime ideals in the Banach *-algebra is obtained. In addition, we study the primitive ideals, modular ideals and the maximal modular ideals of . We also show that the Banach *-algebra possesses the Wiener property and that, for a subhomogeneous C*-algebra A, the Banach * -algebra is symmetric.
We characterize certain properties in a matrix ordered space in order to embed it in a C*-algebra. Let such spaces be called C*-ordered operator spaces. We show that for every self-adjoint operator space there exists a matrix order (on it) to make it a C*-ordered operator space. However, the operator space dual of a (nontrivial) C*-ordered operator space cannot be embedded in any C*-algebra.
There is an unfortunate error in Theorem 4.1 of our paper. However, the statement of the theorem remains true with a correct construction of adding a tail to enlarge the dynamical system.
We study Markov measures and p-adic random walks with the use of states on the Cuntz algebras Op. Via the Gelfand–Naimark–Segal construction, these come from families of representations of Op. We prove that these representations reflect selfsimilarity especially well. In this paper, we consider a Cuntz–Krieger type algebra where the adjacency matrix depends on a parameter q ( q=1 is the case of Cuntz–Krieger algebra). This is an ongoing work generalizing a construction of certain measures associated to random walks on graphs.
We introduce C*-pseudo-multiplicative unitaries and concrete Hopf C*-bimodules for the study of quantum groupoids in the setting of C*-algebras. These unitaries and Hopf C*-bimodules generalize multiplicative unitaries and Hopf C*-algebras and are analogues of the pseudo-multiplicative unitaries and Hopf–von Neumann-bimodules studied by Enock, Lesieur and Vallin. To each C*-pseudo-multiplicative unitary, we associate two Fourier algebras with a duality pairing and in the regular case two Hopf C*-bimodules. The theory is illustrated by examples related to locally compact Hausdorff groupoids. In particular, we obtain a continuous Fourier algebra for a locally compact Hausdorff groupoid.
Algebras associated with quantum electrodynamics and other gauge theories share some mathematical features with T-duality. Exploiting this different perspective and some category theory, the full algebra of fermions and bosons can be regarded as a braided Clifford algebra over a braided commutative boson algebra, sharing much of the structure of ordinary Clifford algebras.
We compare two influential ways of defining a generalized notion of space. The first, inspired by Gelfand duality, states that the category of ‘noncommutative spaces’ is the opposite of the category of C*-algebras. The second, loosely generalizing Stone duality, maintains that the category of ‘point-free spaces’ is the opposite of the category of frames (that is, complete lattices in which the meet distributes over arbitrary joins). Earlier work by the first three authors shows how a noncommutative C*-algebra gives rise to a commutative one internal to a certain sheaf topos. The latter, then, has a constructive Gelfand spectrum, also internal to the topos in question. After a brief review of this work, we compute the so-called external description of this internal spectrum, which in principle is a fibred point-free space in the familiar topos of sets and functions. However, we obtain the external spectrum as a fibred topological space in the usual sense. This leads to an explicit Gelfand transform, as well as to a topological reinterpretation of the Kochen–Specker theorem of quantum mechanics.
We construct compact quantum metric spaces starting from a C*-algebra extension with a positive splitting. As special cases, we discuss Toeplitz algebras, quantum SU(2) and Podleś spheres.
In this paper, we review the parametrized strict deformation quantization of C*-bundles obtained in a previous paper, and give more examples and applications of this theory. In particular, it is used here to classify H3-twisted noncommutative torus bundles over a locally compact space. This is extended to the case of general torus bundles and their parametrized strict deformation quantization. Rieffel’s basic construction of an algebra deformation can be mimicked to deform a monoidal category, which deforms not only algebras but also modules. As a special case, we consider the parametrized strict deformation quantization of Hilbert C*-modules over C*-bundles with fibrewise torus action.
The automorphisms of the canonical core UHF subalgebra ℱn of the Cuntz algebra 𝒪n do not necessarily extend to automorphisms of 𝒪n. Simple examples are discussed within the family of infinite tensor products of (inner) automorphisms of the matrix algebras Mn. In that case, necessary and sufficient conditions for the extension property are presented. Also addressed is the problem of extending to 𝒪n the automorphisms of the diagonal 𝒟n, which is a regular maximal abelian subalgebra with Cantor spectrum. In particular, it is shown that there exist product-type automorphisms of 𝒟n that do not extend to (possibly proper) endomorphisms of 𝒪n.
Effect algebras, which generalize the lattice of projections in a von Neumann algebra, serve as a basis for the study of unsharp observables in quantum mechanics. The direct decomposition of a von Neumann algebra into types I, II, and III is reflected by a corresponding decomposition of its lattice of projections, and vice versa. More generally, in a centrally orthocomplete effect algebra, the so-called type-determining sets induce direct decompositions into various types. In this paper, we extend the theory of type decomposition to a (possibly) noncommutative version of an effect algebra called a pseudoeffect algebra. It has been argued that pseudoeffect algebras constitute a natural structure for the study of noncommuting unsharp or fuzzy observables. We develop the basic theory of centrally orthocomplete pseudoeffect algebras, generalize the notion of a type-determining set to pseudoeffect algebras, and show how type-determining sets induce direct decompositions of centrally orthocomplete pseudoeffect algebras.
Let A be a C*-algebra and let ΘA be the canonical contraction form the Haagerup tensor product of M(A) with itself to the space of completely bounded maps on A. In this paper we consider the following conditions on A: (a) A is a finitely generated module over the centre of M(A); (b) the image of ΘA is equal to the set E(A) of all elementary operators on A; and (c) the lengths of elementary operators on A are uniformly bounded. We show that A satisfies (a) if and only if it is a finite direct sum of unital homogeneous C*-algebras. We also show that if a separable A satisfies (b) or (c), then A is necessarily subhomogeneous and the C*-bundles corresponding to the homogeneous subquotients of A must be of finite type.
A ℂ-linear map θ (not necessarily bounded) between two Hilbert C*-modules is said to be ‘orthogonality preserving’ if 〈θ(x),θ(y)〉=0 whenever 〈x,y〉=0. We prove that if θ is an orthogonality preserving map from a full Hilbert C0(Ω)-module E into another Hilbert C0(Ω) -module F that satisfies a weaker notion of C0 (Ω) -linearity (called ‘localness’), then θ is bounded and there exists ϕ∈Cb (Ω)+ such that 〈θ(x),θ(y)〉=ϕ⋅〈x,y〉 for all x,y∈E.