We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We characterize certain properties in a matrix ordered space in order to embed it in a C*-algebra. Let such spaces be called C*-ordered operator spaces. We show that for every self-adjoint operator space there exists a matrix order (on it) to make it a C*-ordered operator space. However, the operator space dual of a (nontrivial) C*-ordered operator space cannot be embedded in any C*-algebra.
There is an unfortunate error in Theorem 4.1 of our paper. However, the statement of the theorem remains true with a correct construction of adding a tail to enlarge the dynamical system.
We study Markov measures and p-adic random walks with the use of states on the Cuntz algebras Op. Via the Gelfand–Naimark–Segal construction, these come from families of representations of Op. We prove that these representations reflect selfsimilarity especially well. In this paper, we consider a Cuntz–Krieger type algebra where the adjacency matrix depends on a parameter q ( q=1 is the case of Cuntz–Krieger algebra). This is an ongoing work generalizing a construction of certain measures associated to random walks on graphs.
We introduce C*-pseudo-multiplicative unitaries and concrete Hopf C*-bimodules for the study of quantum groupoids in the setting of C*-algebras. These unitaries and Hopf C*-bimodules generalize multiplicative unitaries and Hopf C*-algebras and are analogues of the pseudo-multiplicative unitaries and Hopf–von Neumann-bimodules studied by Enock, Lesieur and Vallin. To each C*-pseudo-multiplicative unitary, we associate two Fourier algebras with a duality pairing and in the regular case two Hopf C*-bimodules. The theory is illustrated by examples related to locally compact Hausdorff groupoids. In particular, we obtain a continuous Fourier algebra for a locally compact Hausdorff groupoid.
Algebras associated with quantum electrodynamics and other gauge theories share some mathematical features with T-duality. Exploiting this different perspective and some category theory, the full algebra of fermions and bosons can be regarded as a braided Clifford algebra over a braided commutative boson algebra, sharing much of the structure of ordinary Clifford algebras.
We compare two influential ways of defining a generalized notion of space. The first, inspired by Gelfand duality, states that the category of ‘noncommutative spaces’ is the opposite of the category of C*-algebras. The second, loosely generalizing Stone duality, maintains that the category of ‘point-free spaces’ is the opposite of the category of frames (that is, complete lattices in which the meet distributes over arbitrary joins). Earlier work by the first three authors shows how a noncommutative C*-algebra gives rise to a commutative one internal to a certain sheaf topos. The latter, then, has a constructive Gelfand spectrum, also internal to the topos in question. After a brief review of this work, we compute the so-called external description of this internal spectrum, which in principle is a fibred point-free space in the familiar topos of sets and functions. However, we obtain the external spectrum as a fibred topological space in the usual sense. This leads to an explicit Gelfand transform, as well as to a topological reinterpretation of the Kochen–Specker theorem of quantum mechanics.
We construct compact quantum metric spaces starting from a C*-algebra extension with a positive splitting. As special cases, we discuss Toeplitz algebras, quantum SU(2) and Podleś spheres.
In this paper, we review the parametrized strict deformation quantization of C*-bundles obtained in a previous paper, and give more examples and applications of this theory. In particular, it is used here to classify H3-twisted noncommutative torus bundles over a locally compact space. This is extended to the case of general torus bundles and their parametrized strict deformation quantization. Rieffel’s basic construction of an algebra deformation can be mimicked to deform a monoidal category, which deforms not only algebras but also modules. As a special case, we consider the parametrized strict deformation quantization of Hilbert C*-modules over C*-bundles with fibrewise torus action.
The automorphisms of the canonical core UHF subalgebra ℱn of the Cuntz algebra 𝒪n do not necessarily extend to automorphisms of 𝒪n. Simple examples are discussed within the family of infinite tensor products of (inner) automorphisms of the matrix algebras Mn. In that case, necessary and sufficient conditions for the extension property are presented. Also addressed is the problem of extending to 𝒪n the automorphisms of the diagonal 𝒟n, which is a regular maximal abelian subalgebra with Cantor spectrum. In particular, it is shown that there exist product-type automorphisms of 𝒟n that do not extend to (possibly proper) endomorphisms of 𝒪n.
Effect algebras, which generalize the lattice of projections in a von Neumann algebra, serve as a basis for the study of unsharp observables in quantum mechanics. The direct decomposition of a von Neumann algebra into types I, II, and III is reflected by a corresponding decomposition of its lattice of projections, and vice versa. More generally, in a centrally orthocomplete effect algebra, the so-called type-determining sets induce direct decompositions into various types. In this paper, we extend the theory of type decomposition to a (possibly) noncommutative version of an effect algebra called a pseudoeffect algebra. It has been argued that pseudoeffect algebras constitute a natural structure for the study of noncommuting unsharp or fuzzy observables. We develop the basic theory of centrally orthocomplete pseudoeffect algebras, generalize the notion of a type-determining set to pseudoeffect algebras, and show how type-determining sets induce direct decompositions of centrally orthocomplete pseudoeffect algebras.
Let A be a C*-algebra and let ΘA be the canonical contraction form the Haagerup tensor product of M(A) with itself to the space of completely bounded maps on A. In this paper we consider the following conditions on A: (a) A is a finitely generated module over the centre of M(A); (b) the image of ΘA is equal to the set E(A) of all elementary operators on A; and (c) the lengths of elementary operators on A are uniformly bounded. We show that A satisfies (a) if and only if it is a finite direct sum of unital homogeneous C*-algebras. We also show that if a separable A satisfies (b) or (c), then A is necessarily subhomogeneous and the C*-bundles corresponding to the homogeneous subquotients of A must be of finite type.
A ℂ-linear map θ (not necessarily bounded) between two Hilbert C*-modules is said to be ‘orthogonality preserving’ if 〈θ(x),θ(y)〉=0 whenever 〈x,y〉=0. We prove that if θ is an orthogonality preserving map from a full Hilbert C0(Ω)-module E into another Hilbert C0(Ω) -module F that satisfies a weaker notion of C0 (Ω) -linearity (called ‘localness’), then θ is bounded and there exists ϕ∈Cb (Ω)+ such that 〈θ(x),θ(y)〉=ϕ⋅〈x,y〉 for all x,y∈E.
Let A and B be C*-algebras, let X be an essential Banach A-bimodule and let T : A → B and S : A → X be continuous linear maps with T surjective. Suppose that T(a)T(b) + T(b)T(a) = 0 and S(a)b + bS(a) + aS(b) + S(b)a = 0 whenever a, b ε A are such that ab = ba = 0. We prove that then T = wΦ and S = D + Ψ, where w lies in the centre of the multiplier algebra of B, Φ: A → B is a Jordan epimorphism, D: A → X is a derivation and Ψ: A → X is a bimodule homomorphism.
We completely determine the localized automorphisms of the Cuntz algebras corresponding to permutation matrices in Mn ⊗ Mn for n = 3 and n = 4. This result is obtained through a combination of general combinatorial techniques and large scale computer calculations. Our analysis proceeds according to the general scheme proposed in a previous paper, where we analysed in detail the case of using labelled rooted trees. We also discuss those proper endomorphisms of these Cuntz algebras which restrict to automorphisms of their respective diagonals. In the case of we compute the number of automorphisms of the diagonal induced by permutation matrices in M3 ⊗ M3 ⊗ M3.
Recently, Daws introduced a notion of co-representation of abelian Hopf–von Neumann algebras on general reflexive Banach spaces. In this note, we show that this notion cannot be extended beyond subhomogeneous Hopf–von Neumann algebras. The key is our observation that, for a von Neumann algebra 𝔐 and a reflexive operator space E, the normal spatial tensor product is a Banach algebra if and only if 𝔐 is subhomogeneous or E is completely isomorphic to column Hilbert space.
We identify the Poisson boundary of the dual of the universal compact quantum group Au(F) with a measurable field of ITPFI (infinite tensor product of finite type I) factors.
Let A be a unital C*-algebra. Let (B,E) be a pair consisting of a unital C*-algebra B containing A as a C*-subalgebra with a unit that is also the unit of B, and a conditional expectation E from B onto A that is of index-finite type and of depth 2. Let B1 be the C*-basic construction induced by (B,E). In this paper, we shall show that any such pair (B,E) satisfying the conditions that A′∩B=ℂ1 and that A′∩B1 is commutative is constructed by a saturated C*-algebraic bundle over a finite group. Furthermore, we shall give a necessary and sufficient condition for B to be described as a twisted crossed product of A by its twisted action of a finite group under the condition that A′∩B1 is commutative.
We give a new very concrete description of the C*-envelope of the tensor algebra associated to a multivariable dynamical system. In the surjective case, this C*-envelope is described as a crossed product by an endomorphism and as a groupoid C*-algebra. In the non-surjective case, it is a full corner of such an algebra. We also show that when the space is compact the C*-envelope is simple if and only if the system is minimal.
Higher-rank graphs were introduced by Kumjian and Pask to provide models for higher-rank Cuntz–Krieger algebras. In a previous paper, we constructed 2-graphs whose path spaces are rank-two subshifts of finite type, and showed that this construction yields aperiodic 2-graphs whoseC*-algebras are simple and are not ordinary graph algebras. Here we show that the construction also gives a family of periodic 2-graphs which we call domino graphs. We investigate the combinatorial structure of domino graphs, finding interesting points of contact with the existing combinatorial literature, and prove a structure theorem for the C*-algebras of domino graphs.
We show that for any type III1 free Araki–Woods factor = (HR, Ut)″ associated with an orthogonal representation (Ut) of R on a separable real Hilbert space HR, the continuous core M = ⋊σR is a semisolid II∞ factor, i.e. for any non-zero finite projection q ∈ M, the II1 factor qM q is semisolid. If the representation (Ut) is moreover assumed to be mixing, then we prove that the core M is solid. As an application, we construct an example of a non-amenable solid II1 factor N with full fundamental group, i.e. (N) = R*+, which is not isomorphic to any interpolated free group factor L(Ft), for 1 < t ≤ = +∞.