To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It is shown that the complexification of a positive linear map on a real C*-algebra need not be positive whereas the complexification of a completely positive linear map is completely positive. It is further shown that a real C*-algebra is amenable if and only if its complexification is amenable and that a completely positive linear map is amenable if and only if its complexification is. Finally, a real version of the Choi–Effros lifting theorem is established.
Let A be a C*-algebra, and let X be a Banach A-bimodule. Johnson [B. E. Johnson, ‘Local derivations on C*-algebras are derivations’, Trans. Amer. Math. Soc. 353 (2000), 313–325] showed that local derivations from A into X are derivations. We extend this concept of locality to the higher cohomology of a C*-algebra and show that, for every , bounded local n-cocycles from A(n) into X are n-cocycles.
Let be a higher rank Exel–Laca algebra generated by an alphabet . If contains d commuting isometries corresponding to rank d and the transition matrices do not have finite rows, then is trivial and is isomorphic to K0 of the abelian subalgebra of generated by the source projections of .
Every directed graph defines a Hilbert space and a family of weighted shifts that act on the space. We identify a natural notion of periodicity for such shifts and study their C* -algebras. We prove the algebras generated by all shifts of a fixed period are of Cuntz-Krieger and Toeplitz-Cuntz-Krieger type. The limit C* -algebras determined by an increasing sequence of positive integers, each dividing the next, are proved to be isomorphic to Cuntz-Pimsner algebras and the linking maps are shown to arise as factor maps. We derive a characterization of simplicity and compute the K-groups for these algebras. We prove a classification theorem for the class of algebras generated by simple loop graphs.
A λ-graph system is a labeled Bratteli diagram with shift transformation. It is a generalization of finite labeled graphs and presents a subshift. In Doc. Math. 7 (2002) 1–30, the author constructed a C*-algebra O£ associated with a λ-graph system £ from a graph theoretic view-point. If a λ-graph system comes from a finite labeled graph, the algebra becomes a Cuntz-Krieger algebra. In this paper, we prove that there is a bijective correspondence between the lattice of all saturated hereditary subsets of £ and the lattice of all ideals of the algebra O£, under a certain condition on £ called (II). As a result, the class of the C*-algebras associated with λ-graph systems under condition (II) is closed under quotients by its ideals.
Given a representation θ: A → B(H) of a Banach algebra A on a Hilbert space H, H is said to have the reduction property as an A—module if every closed invariant subspace of H is complemented by a closed invariant subspace; A has the total reduction property if for every representation θ: A → B(H), H has the reduction property.
We show that a C*—algebra has the total reduction property if and only if all its representations are similar to *—representations. The question of whether all C*-algebras have this property is the famous ‘similarity problem’ of Kadison.
We conjecture that non-self-adjoint operator algebras with the total reduction property are always isomorphic to C*-algebras, and prove this result for operator algebras consisting of compact operators.
Let A be a C*-algebra and K the C*-algebra of all compact operators on a countably infinite dimensional Hilbert space. In this note, we shall show that there is an isomorphism of a semigroup of equivalence classes of certain partial automorphisms of A ⊗ K onto a semigroup of equivalence classes of certain countably generated A-A-Hilbert bimodules.
For a locally finite directed graph E, it is known that the graph C*-algebra C*(E) has real rank zero if and only if the graph E satisfies the loop condition (K). In this paper we extend this to an arbitrary directed graph case using the desingularization of a graph due to Drinen and Tomforde
A left ideal on any C*-algebra is an example of an operator algebra with a right contractive approximate indentiy (r.c.a.i.). Indeed, left ideal in C*-algebras may be charcterized as the class of such operator algebras, which happen also to be triple systems. Conversely, we show here and in a sequel to this paper, that operator algebras with r.c.a.i. shoulod be studied in terms of a certain let ideal of a C*-algebra. We study left ideals from the perspective of ‘Hamana theory’ and using the multiplier algebras of an operator space studied elsewhere by the author. More generally, we develop some general theory for operator algebras which have a 1-sided identity or approzimate indentity, including a Banach-Stone theorem for these algebras, and an analysis of the ‘multiplier operator algebra’.
We give a formula for the Dixmier-Douady class of a continuous-trace groupoid crossed product that arises from an action of a locally trivial, proper, principal groupoid on a bundle of elementary C*-algebras that satisfies Fell's condition.
Let ℳ be a semi-finite von Neumann algebra equipped with a faithful normal trace τ. We prove a Kadec-Pelczyński type dichotomy principle for subspaces of symmetric space of measurable operators of Rademacher type 2. We study subspace structures of non-commutative Lorentz spaces Lp, q, (ℳ, τ), extending some results of Carothers and Dilworth to the non-commutative settings. In particular, we show that, under natural conditions on indices, ℓp cannot be embedded into Lp, q (ℳ, τ). As applications, we prove that for 0 < p < ∞ with p ≠ 2, ℓp cannot be strongly embedded into Lp(ℳ, τ). This provides a non-commutative extension of a result of Kalton for 0 < p < 1 and a result of Rosenthal for 1 ≦ p < 2 on Lp [0, 1].
The first purpose of this paper is to give a tensor product formula of the characteristic invariant and modular invariant for a tensor product action of a discrete group G on AFD factors. The second purpose is to describe a characteristic invariant and modular invariant of the extended action to a crossed product in terms of the original invariants.
The notions of limits and colimits are studied in the category of C*-algebras. It is shown that limits and colimits of diagrams of C*-algebras are stable under tensor product by a fixed C*-algebra, and crossed product by a locally compact group.
We show that the left regular representation of a countably infinite (discrete) group admits no finite-dimensional invariant subspaces. We also discuss a consequence of this fact, and the reason for our interest in this statement.
We then formally state, as a ‘conjecture’, a possible generalisation of the above statement to the context of fusion algebras. We prove the validity of this conjecture in the case of the fusion algebra arising from the dual of a compact Lie group.
We finally show, by example, that our conjecture is false as stated, and raise the question of whether there is a ‘good’ class of fusion algebras, which contains (a) the two ‘good classes’ discussed above, namely, discrete groups and compact group duals, and (b) only contains fusion algebras for which the conjecture is valid.
We construct irreducible unitary representations of a finitely generated free group which are weakly contained in the left regular representation and in which a given linear combination of the generators has an eigenvalue. When the eigenvalue is specified, we conjecture that there is only one such representation. The representation we have found is described explicitly (modulo inversion of a certain rational map on Euclidean space) in terms of a positive definite function, and also by means of a quasi-invariant probability measure on the combinatorial boundary of the group.
Certain C*-algebras on generators and relations are associated to directed graphs. For a finite graph γ, C*-algebra is canonically isomorphic to Cuntz-Krieger algebra corresponding to the adjacency matrix of γ. It is shown that if a countably infinite graph γ is strongly connected, γ is simple and purely infinite.
The graph product of a family of groups lies somewhere between their direct and free products, with the graph determining which pairs of groups commute. We show that the graph product of quasi-lattice ordered groups is quasi-lattice ordered, and, when the underlying groups are amenable, that it satisfies Nica's amenability condition for quasi-lattice orders. The associated Toeplitz algebras have a universal property, and their representations are faithful if the generating isometries satisfy a joint properness condition. When applied to right-angled Artin groups this yields a uniqueness theorem for the C*-algebra generated by a collection of isometries such that any two of them either *-commute or else have orthogonal ranges. The analogous result fails to hold for the nonabelian Artin groups of finite type considered by Brieskorn and Saito, and Deligne.
In this paper we define and study a generalized Drazin inverse xD for ring elements x, and give a characterization of elements a, b for which aaD = bbD. We apply our results to the study of EP elements in a ring with involution.
For a maximal coaction δ of a discrete group G on a C*-algebra A and a normal subgroup N of G, there are at least three natural A × G ×δ| N - A ×δ|1 G/N imprimitivity bimodules: Mansfield's bimodule ; the bimodule assembled by Ng from Green's imprimitivity bimodule and Katayama duality; and the bimodule assembled from and the crossed-product Mansfield bimodule . We show that all three of these are isomorphic, so that the corresponding inducing maps on representations are identical. This can be interpreted as saying that Mansfield and Green induction are inverses of one another ‘modulo Katayama duality’. These results pass to twisted coactions; dual results starting with an action are also given.