We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We deduce properties of the Koopman representation of a positive entropy probability measure-preserving action of a countable, discrete, sofic group. Our main result may be regarded as a ‘representation-theoretic’ version of Sinaǐ’s factor theorem. We show that probability measure-preserving actions with completely positive entropy of an infinite sofic group must be mixing and, if the group is nonamenable, have spectral gap. This implies that if $\unicode[STIX]{x1D6E4}$ is a nonamenable group and $\unicode[STIX]{x1D6E4}\curvearrowright (X,\unicode[STIX]{x1D707})$ is a probability measure-preserving action which is not strongly ergodic, then no action orbit equivalent to $\unicode[STIX]{x1D6E4}\curvearrowright (X,\unicode[STIX]{x1D707})$ has completely positive entropy. Crucial to these results is a formula for entropy in the presence of a Polish, but a priori noncompact, model.
We give a proof of the Khintchine inequalities in non-commutative $L_{p}$-spaces for all $0<p<1$. These new inequalities are valid for the Rademacher functions or Gaussian random variables, but also for more general sequences, for example, for the analogues of such random variables in free probability. We also prove a factorization for operators from a Hilbert space to a non-commutative $L_{p}$-space, which is new for $0<p<1$. We end by showing that Mazur maps are Hölder on semifinite von Neumann algebras.
Let $\text{H}$ be a subgroup of some locally compact group $\text{G}$. Assume that $\text{H}$ is approximable by discrete subgroups and that $\text{G}$ admits neighborhood bases which are almost invariant under conjugation by finite subsets of $\text{H}$. Let $m:\text{G}\rightarrow \mathbb{C}$ be a bounded continuous symbol giving rise to an $L_{p}$-bounded Fourier multiplier (not necessarily completely bounded) on the group von Neumann algebra of $\text{G}$ for some $1\leqslant p\leqslant \infty$. Then, $m_{\mid _{\text{H}}}$ yields an $L_{p}$-bounded Fourier multiplier on the group von Neumann algebra of $\text{H}$ provided that the modular function ${\rm\Delta}_{\text{G}}$ is equal to 1 over $\text{H}$. This is a noncommutative form of de Leeuw’s restriction theorem for a large class of pairs $(\text{G},\text{H})$. Our assumptions on $\text{H}$ are quite natural, and they recover the classical result. The main difference with de Leeuw’s original proof is that we replace dilations of Gaussians by other approximations of the identity for which certain new estimates on almost-multiplicative maps are crucial. Compactification via lattice approximation and periodization theorems are also investigated.
We examine a class of ergodic transformations on a probability measure space $(X,{\it\mu})$ and show that they extend to representations of ${\mathcal{B}}(L^{2}(X,{\it\mu}))$ that are both implemented by a Cuntz family and ergodic. This class contains several known examples, which are unified in our work. During the analysis of the existence and uniqueness of this Cuntz family, we find several results of independent interest. Most notably, we prove a decomposition of $X$ for $N$-to-one local homeomorphisms that is connected to the orthonormal bases of certain Hilbert modules.
We show that, under special hypotheses, each 3-Jordan homomorphism ${\it\varphi}$ between Banach algebras ${\mathcal{A}}$ and ${\mathcal{B}}$ is a 3-homomorphism.
From the viewpoint of $C^{\ast }$-dynamical systems, we define a weak version of the Haagerup property for the group action on a $C^{\ast }$-algebra. We prove that this group action preserves the Haagerup property of $C^{\ast }$-algebras in the sense of Dong [‘Haagerup property for $C^{\ast }$-algebras’, J. Math. Anal. Appl.377 (2011), 631–644], that is, the reduced crossed product $C^{\ast }$-algebra $A\rtimes _{{\it\alpha},\text{r}}{\rm\Gamma}$ has the Haagerup property with respect to the induced faithful tracial state $\widetilde{{\it\tau}}$ if $A$ has the Haagerup property with respect to ${\it\tau}$.
For any pair M, N of von Neumann algebras such that the algebraic tensor product M ⊗ N admits more than one C*-norm, the cardinal of the set of C*-norms is at least 2ℵ0. Moreover, there is a family with cardinality 2ℵ0 of injective tensor product functors for C*-algebras in Kirchberg's sense. Let ${\mathbb B}$=∏nMn. We also show that, for any non-nuclear von Neumann algebra M⊂ ${\mathbb B}$(ℓ2), the set of C*-norms on ${\mathbb B}$ ⊗ M has cardinality equal to 22ℵ0.
We offer a Lebesgue-type decomposition of a representable functional on a *-algebra into absolutely continuous and singular parts with respect to another. Such a result was proved by Zs. Szűcs due to a general Lebesgue decomposition theorem of S. Hassi, H.S.V. de Snoo, and Z. Sebestyén concerning non-negative Hermitian forms. In this paper, we provide a self-contained proof of Szűcs' result and in addition we prove that the corresponding absolutely continuous parts are absolutely continuous with respect to each other.
It is shown that ${\mathcal{Z}}$-stable projectionless C*-algebras have the property that every element is a limit of products of two nilpotents. This is then used to classify the approximate unitary equivalence classes of positive elements in such C*-algebras using traces.
We present two applications of explicit formulas, due to Cuntz and Krieger, for computations in $K$-homology of graph $C^{\ast }$-algebras. We prove that every $K$-homology class for such an algebra is represented by a Fredholm module having finite-rank commutators, and we exhibit generating Fredholm modules for the $K$-homology of quantum lens spaces.
It is an open question whether every derivation of a Fréchet GB$^{\ast }$-algebra $A[{\it\tau}]$ is continuous. We give an affirmative answer for the case where $A[{\it\tau}]$ is a smooth Fréchet nuclear GB$^{\ast }$-algebra. Motivated by this result, we give examples of smooth Fréchet nuclear GB$^{\ast }$-algebras which are not pro-C$^{\ast }$-algebras.
We prove that, under rather general conditions, the 1-cohomology of a von Neumann algebra $M$ with values in a Banach $M$-bimodule satisfying a combination of smoothness and operatorial conditions vanishes. For instance, we show that, if $M$ acts normally on a Hilbert space ${\mathcal{H}}$ and ${\mathcal{B}}_{0}\subset {\mathcal{B}}({\mathcal{H}})$ is a norm closed $M$-bimodule such that any $T\in {\mathcal{B}}_{0}$ is smooth (i.e., the left and right multiplications of $T$ by $x\in M$ are continuous from the unit ball of $M$ with the $s^{\ast }$-topology to ${\mathcal{B}}_{0}$ with its norm), then any derivation of $M$ into ${\mathcal{B}}_{0}$ is inner. The compact operators are smooth over any $M\subset {\mathcal{B}}({\mathcal{H}})$, but there is a large variety of non-compact smooth elements as well.
Let $P$ be a finitely generated cancellative abelian monoid. A $P$-graph ${\rm\Lambda}$ is a natural generalization of a $k$-graph. A pullback of ${\rm\Lambda}$ is constructed by pulling it back over a given monoid morphism to $P$, while a pushout of ${\rm\Lambda}$ is obtained by modding out its periodicity, which is deduced from a natural equivalence relation on ${\rm\Lambda}$. One of our main results in this paper shows that, for some $k$-graphs ${\rm\Lambda}$, ${\rm\Lambda}$ is isomorphic to the pullback of its pushout via a natural quotient map, and that its graph $\text{C}^{\ast }$-algebra can be embedded into the tensor product of the graph $\text{C}^{\ast }$-algebra of its pushout and $\text{C}^{\ast }(\text{Per}\,{\rm\Lambda})$. As a consequence, in this case, the cycline algebra generated by the standard generators corresponding to equivalent pairs is a maximal abelian subalgebra, and there is a faithful conditional expectation from the graph $\text{C}^{\ast }$-algebra onto it.
We define the quotient and complete NUOS-quotient map (NUOS stands for nonunital operator system) in the category of nonunital operator systems. We prove that the greatest reduced tensor product max0 is projective in some sense. Moreover, we define a pseudo unit in a nonunital operator system and give some necessary and sufficient conditions under which a nonunital operator system has an operator system structure.
We prove that every incidence graph of a finite projective plane allows a partitioning into incident point-line pairs. This is used to determine the order of the identity in the K0-group of so-called polygonal algebras associated with cocompact group actions on Ã2-buildings with three orbits. These C*-algebras are classified by the K0-group and the class of the identity in K0. To be more precise, we show that 2(q − 1) = 0, where q is the order of the links of the building. Furthermore, if q = 22l−1 with l ∈ ℤ, then the order of is q − 1.
An algebra A is said to be directly finite if each left-invertible element in the (conditional) unitization of A is right invertible. We show that the reduced group C*-algebra of a unimodular group is directly finite, extending known results for the discrete case. We also investigate the corresponding problem for algebras of p-pseudofunctions, showing that these algebras are directly finite if G is amenable and unimodular, or unimodular with the Kunze–Stein property. An exposition is also given of how existing results from the literature imply that L1(G) is not directly finite when G is the affine group of either the real or complex line.
It is well known that a finitely generated group ${\rm\Gamma}$ has Kazhdan’s property (T) if and only if the Laplacian element ${\rm\Delta}$ in $\mathbb{R}[{\rm\Gamma}]$ has a spectral gap. In this paper, we prove that this phenomenon is witnessed in $\mathbb{R}[{\rm\Gamma}]$. Namely, ${\rm\Gamma}$ has property (T) if and only if there exist a constant ${\it\kappa}>0$ and a finite sequence ${\it\xi}_{1},\ldots ,{\it\xi}_{n}$ in $\mathbb{R}[{\rm\Gamma}]$ such that ${\rm\Delta}^{2}-{\it\kappa}{\rm\Delta}=\sum _{i}{\it\xi}_{i}^{\ast }{\it\xi}_{i}$. This result suggests the possibility of finding new examples of property (T) groups by solving equations in $\mathbb{R}[{\rm\Gamma}]$, possibly with the assistance of computers.
We study countable saturation of metric reduced products and introduce continuous fields of metric structures indexed by locally compact, separable, completely metrizable spaces. Saturation of the reduced product depends both on the underlying index space and the model. By using the Gelfand–Naimark duality we conclude that the assertion that the Stone–Čech remainder of the half-line has only trivial automorphisms is independent from ZFC (Zermelo-Fraenkel axiomatization of set theory with the Axiom of Choice). Consistency of this statement follows from the Proper Forcing Axiom, and this is the first known example of a connected space with this property.
We study the metric entropy of the metric space ${\mathcal{B}}_{n}$ of all $n$-dimensional Banach spaces (the so-called Banach–Mazur compactum) equipped with the Banach–Mazur (multiplicative) “distance” $d$. We are interested either in estimates independent of the dimension or in asymptotic estimates when the dimension tends to $\infty$. For instance, we prove that, if $N({\mathcal{B}}_{n},d,1+{\it\varepsilon})$ is the smallest number of “balls” of “radius” $1+{\it\varepsilon}$ that cover ${\mathcal{B}}_{n}$, then for any ${\it\varepsilon}>0$ we have
We also prove an analogous result for the metric entropy of the set of $n$-dimensional operator spaces equipped with the distance $d_{N}$ naturally associated with $N\times N$ matrices with operator entries. In that case $N$ is arbitrary but our estimates are valid independently of $N$. In the Banach space case (i.e. $N=1$) the above upper bound is part of the folklore, and the lower bound is at least partially known (but apparently has not appeared in print). While we follow the same approach in both cases, the matricial case requires more delicate ingredients, namely estimates (from our previous work) on certain $n$-tuples of $N\times N$ unitary matrices known as “quantum expanders”.