To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We define the Schur multipliers of a separable von Neumann algebra with Cartan maximal abelian self-adjoint algebra , generalizing the classical Schur multipliers of (ℓ2). We characterize these as the normal -bimodule maps on . If contains a direct summand isomorphic to the hyperfinite II1 factor, then we show that the Schur multipliers arising from the extended Haagerup tensor product ⊗eh are strictly contained in the algebra of all Schur multipliers.
We discuss the half-liberation operation X → X*, for the algebraic submanifolds of the unit sphere, $X\subset S^{N-1}_\mathbb C$. There are several ways of constructing this correspondence, and we take them into account. Our main results concern the computation of the affine quantum isometry group G+(X*), for the sphere itself.
A locally compact group G is compact if and only if its convolution algebras contain non-zero (weakly) completely continuous elements. Dually, G is discrete if its function algebras contain non-zero completely continuous elements. We prove non-commutative versions of these results in the case of locally compact quantum groups.
We present a new construction of crossed-product duality for maximal coactions that uses Fischer’s work on maximalizations. Given a group $G$ and a coaction $(A,\unicode[STIX]{x1D6FF})$ we define a generalized fixed-point algebra as a certain subalgebra of $M(A\rtimes _{\unicode[STIX]{x1D6FF}}G\rtimes _{\,\widehat{\unicode[STIX]{x1D6FF}}}G)$, and recover the coaction via this double crossed product. Our goal is to formulate this duality in a category-theoretic context, and one advantage of our construction is that it breaks down into parts that are easy to handle in this regard. We first explain this for the category of nondegenerate *-homomorphisms and then, analogously, for the category of $C^{\ast }$-correspondences. Also, we outline partial results for the ‘outer’ category, which has been studied previously by the authors.
We prove that an operator system is (min, ess)-nuclear if its $C^{\ast }$-envelope is nuclear. This allows us to deduce that an operator system associated to a generating set of a countable discrete group by Farenick et al. [‘Operator systems from discrete groups’, Comm. Math. Phys.329(1) (2014), 207–238] is (min, ess)-nuclear if and only if the group is amenable. We also make a detailed comparison between ess and other operator system tensor products and show that an operator system associated to a minimal generating set of a finitely generated discrete group (respectively, a finite graph) is (min, max)-nuclear if and only if the group is of order less than or equal to three (respectively, every component of the graph is complete).
If a locally compact group G acts on a C*-algebra B, we have both full and reduced crossed products and each has a coaction of G. We investigate ‘exotic’ coactions in between the two, which are determined by certain ideals E of the Fourier–Stieltjes algebra B(G); an approach that is inspired by recent work of Brown and Guentner on new C*-group algebra completions. We actually carry out the bulk of our investigation in the general context of coactions on a C*-algebra A. Buss and Echterhoff have shown that not every coaction comes from one of these ideals, but nevertheless the ideals do generate a wide array of exotic coactions. Coactions determined by these ideals E satisfy a certain ‘E-crossed product duality’, intermediate between full and reduced duality. We give partial results concerning exotic coactions with the ultimate goal being a classification of which coactions are determined by ideals of B(G).
In this short note we present a common characterisation of the logarithmic function and the subspace of all trace zero elements in finite von Neumann factors.
This paper is about the reduced group $C^{\ast }$-algebras of real reductive groups, and about Hilbert $C^{\ast }$-modules over these $C^{\ast }$-algebras. We shall do three things. First, we shall apply theorems from the tempered representation theory of reductive groups to determine the structure of the reduced $C^{\ast }$-algebra (the result has been known for some time, but it is difficult to assemble a full treatment from the existing literature). Second, we shall use the structure of the reduced $C^{\ast }$-algebra to determine the structure of the Hilbert $C^{\ast }$-bimodule that represents the functor of parabolic induction. Third, we shall prove that the parabolic induction bimodule admits a secondary inner product, using which we can define a functor of parabolic restriction in tempered representation theory. We shall prove in a sequel to this paper that parabolic restriction is adjoint, on both the left and the right, to parabolic induction in the context of tempered unitary Hilbert space representations.
We deduce properties of the Koopman representation of a positive entropy probability measure-preserving action of a countable, discrete, sofic group. Our main result may be regarded as a‘representation-theoretic’ version of Sinaǐ’s factor theorem. We show that probability measure-preserving actions with completely positive entropy of an infinite sofic group must be mixing and, if the group is nonamenable, have spectral gap. This implies that if $\unicode[STIX]{x1D6E4}$ is a nonamenable group and $\unicode[STIX]{x1D6E4}\curvearrowright (X,\unicode[STIX]{x1D707})$ is a probability measure-preserving action which is not strongly ergodic, then no action orbit equivalent to $\unicode[STIX]{x1D6E4}\curvearrowright (X,\unicode[STIX]{x1D707})$ has completely positive entropy. Crucial to these results is a formula for entropy in the presence of a Polish, but a priori noncompact, model.
We give a proof of the Khintchine inequalities in non-commutative $L_{p}$-spaces for all $0<p<1$. These new inequalities are valid for the Rademacher functions or Gaussian random variables, but also for more general sequences, for example, for the analogues of such random variables in free probability. We also prove a factorization for operators from a Hilbert space to a non-commutative $L_{p}$-space, which is new for $0<p<1$. We end by showing that Mazur maps are Hölder on semifinite von Neumann algebras.
Let $\text{H}$ be a subgroup of some locally compact group $\text{G}$. Assume that $\text{H}$ is approximable by discrete subgroups and that $\text{G}$ admits neighborhood bases which are almost invariant under conjugation by finite subsets of $\text{H}$. Let $m:\text{G}\rightarrow \mathbb{C}$ be a bounded continuous symbol giving rise to an $L_{p}$-bounded Fourier multiplier (not necessarily completely bounded) on the group von Neumann algebra of $\text{G}$ for some $1\leqslant p\leqslant \infty$. Then, $m_{\mid _{\text{H}}}$ yields an $L_{p}$-bounded Fourier multiplier on the group von Neumann algebra of $\text{H}$ provided that the modular function ${\rm\Delta}_{\text{G}}$ is equal to 1 over $\text{H}$. This is a noncommutative form of de Leeuw’s restriction theorem for a large class of pairs $(\text{G},\text{H})$. Our assumptions on $\text{H}$ are quite natural, and they recover the classical result. The main difference with de Leeuw’s original proof is that we replace dilations of Gaussians by other approximations of the identity for which certain new estimates on almost-multiplicative maps are crucial. Compactification via lattice approximation and periodization theorems are also investigated.
We examine a class of ergodic transformations on a probability measure space $(X,{\it\mu})$ and show that they extend to representations of ${\mathcal{B}}(L^{2}(X,{\it\mu}))$ that are both implemented by a Cuntz family and ergodic. This class contains several known examples, which are unified in our work. During the analysis of the existence and uniqueness of this Cuntz family, we find several results of independent interest. Most notably, we prove a decomposition of $X$ for $N$-to-one local homeomorphisms that is connected to the orthonormal bases of certain Hilbert modules.
We show that, under special hypotheses, each 3-Jordan homomorphism ${\it\varphi}$ between Banach algebras ${\mathcal{A}}$ and ${\mathcal{B}}$ is a 3-homomorphism.
From the viewpoint of $C^{\ast }$-dynamical systems, we define a weak version of the Haagerup property for the group action on a $C^{\ast }$-algebra. We prove that this group action preserves the Haagerup property of $C^{\ast }$-algebras in the sense of Dong [‘Haagerup property for $C^{\ast }$-algebras’, J. Math. Anal. Appl.377 (2011), 631–644], that is, the reduced crossed product $C^{\ast }$-algebra $A\rtimes _{{\it\alpha},\text{r}}{\rm\Gamma}$ has the Haagerup property with respect to the induced faithful tracial state $\widetilde{{\it\tau}}$ if $A$ has the Haagerup property with respect to ${\it\tau}$.
For any pair M, N of von Neumann algebras such that the algebraic tensor product M ⊗ N admits more than one C*-norm, the cardinal of the set of C*-norms is at least 2ℵ0. Moreover, there is a family with cardinality 2ℵ0 of injective tensor product functors for C*-algebras in Kirchberg's sense. Let ${\mathbb B}$=∏nMn. We also show that, for any non-nuclear von Neumann algebra M⊂ ${\mathbb B}$(ℓ2), the set of C*-norms on ${\mathbb B}$ ⊗ M has cardinality equal to 22ℵ0.
We offer a Lebesgue-type decomposition of a representable functional on a *-algebra into absolutely continuous and singular parts with respect to another. Such a result was proved by Zs. Szűcs due to a general Lebesgue decomposition theorem of S. Hassi, H.S.V. de Snoo, and Z. Sebestyén concerning non-negative Hermitian forms. In this paper, we provide a self-contained proof of Szűcs' result and in addition we prove that the corresponding absolutely continuous parts are absolutely continuous with respect to each other.
It is shown that ${\mathcal{Z}}$-stable projectionless C*-algebras have the property that every element is a limit of products of two nilpotents. This is then used to classify the approximate unitary equivalence classes of positive elements in such C*-algebras using traces.
We present two applications of explicit formulas, due to Cuntz and Krieger, for computations in $K$-homology of graph $C^{\ast }$-algebras. We prove that every $K$-homology class for such an algebra is represented by a Fredholm module having finite-rank commutators, and we exhibit generating Fredholm modules for the $K$-homology of quantum lens spaces.
It is an open question whether every derivation of a Fréchet GB$^{\ast }$-algebra $A[{\it\tau}]$ is continuous. We give an affirmative answer for the case where $A[{\it\tau}]$ is a smooth Fréchet nuclear GB$^{\ast }$-algebra. Motivated by this result, we give examples of smooth Fréchet nuclear GB$^{\ast }$-algebras which are not pro-C$^{\ast }$-algebras.
We prove that, under rather general conditions, the 1-cohomology of a von Neumann algebra $M$ with values in a Banach $M$-bimodule satisfying a combination of smoothness and operatorial conditions vanishes. For instance, we show that, if $M$ acts normally on a Hilbert space ${\mathcal{H}}$ and ${\mathcal{B}}_{0}\subset {\mathcal{B}}({\mathcal{H}})$ is a norm closed $M$-bimodule such that any $T\in {\mathcal{B}}_{0}$ is smooth (i.e., the left and right multiplications of $T$ by $x\in M$ are continuous from the unit ball of $M$ with the $s^{\ast }$-topology to ${\mathcal{B}}_{0}$ with its norm), then any derivation of $M$ into ${\mathcal{B}}_{0}$ is inner. The compact operators are smooth over any $M\subset {\mathcal{B}}({\mathcal{H}})$, but there is a large variety of non-compact smooth elements as well.