We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We answer a question of Takesaki by showing that the following can be derived from the thesis of Shen: if A and B are σ-unital hereditary C*-subalgebras of C such that ‖p – q‖ < 1, where p and q are the corresponding open projections, then A and B are isomorphic. We give some further elaborations and counterexamples with regard to the σ-unitality hypothesis. We produce a natural one-to-one correspondence between complete order isomorphisms of C*-algebras and invertible left multipliers of imprimitivity bimodules. A corollary of the above two results is that any complete order isomorphism between σ-unital C*-algebras is the composite of an isomorphism with an inner complete order isomorphism. We give a separable counterexample to a question of Akemann and Pedersen; namely, the space of quasi-multipliers is not linearly generated by left and right multipliers. But we show that the space of quasi-multipliers is multiplicatively generated by left and right multipliers in the σ-unital case. In particular, every positive quasi-multiplier is of the form T*T for T a left multiplier. We show that a Lie theory consequence of the negative result just stated is that the map sending T to T*T need not be open, even for very nice C*-algebras. We show that surjective maps between σ-unital C*-algebras induce surjective maps on left, right, and quasi-multipliers. (The more significant similar result for multipliers is Pedersen's non-commutative Tietze extension theorem.) We elaborate the relations of the above with continuous fields of Hilbert spaces and in so doing answer a question of Dixmier and Douady. We discuss the relationship of our results to the theory of perturbations of C*-algebras.
Cloneable sets of states in C*-algebras are characterized in terms of strong orthogonality of states. Moreover, the relation between strong cloning and distinguishability of states is investigated together with some additional properties of strong cloning in abelian C*-algebras.
Let $I$ be any nonempty set and let $(M_{i},\unicode[STIX]{x1D711}_{i})_{i\in I}$ be any family of nonamenable factors, endowed with arbitrary faithful normal states, that belong to a large class ${\mathcal{C}}_{\text{anti}\text{-}\text{free}}$ of (possibly type $\text{III}$) von Neumann algebras including all nonprime factors, all nonfull factors and all factors possessing Cartan subalgebras. For the free product $(M,\unicode[STIX]{x1D711})=\ast _{i\in I}(M_{i},\unicode[STIX]{x1D711}_{i})$, we show that the free product von Neumann algebra $M$ retains the cardinality $|I|$ and each nonamenable factor $M_{i}$ up to stably inner conjugacy, after permutation of the indices. Our main theorem unifies all previous Kurosh-type rigidity results for free product type $\text{II}_{1}$ factors and is new for free product type $\text{III}$ factors. It moreover provides new rigidity phenomena for type $\text{III}$ factors.
We study the problem of extending a state on an abelian $C^{\ast }$-subalgebra to a tracial state on the ambient $C^{\ast }$-algebra. We propose an approach that is well suited to the case of regular inclusions, in which there is a large supply of normalizers of the subalgebra. Conditional expectations onto the subalgebra give natural extensions of a state to the ambient $C^{\ast }$-algebra; we prove that these extensions are tracial states if and only if certain invariance properties of both the state and conditional expectations are satisfied. In the example of a groupoid $C^{\ast }$-algebra, these invariance properties correspond to invariance of associated measures on the unit space under the action of bisections. Using our framework, we are able to completely describe the tracial state space of a Cuntz–Krieger graph algebra. Along the way we introduce certain operations called graph tightenings, which both streamline our description and provide connections to related finiteness questions in graph $C^{\ast }$-algebras. Our investigation has close connections with the so-called unique state extension property and its variants.
Recently Houdayer and Isono have proved, among other things, that every biexact group $\unicode[STIX]{x1D6E4}$ has the property that for any non-singular strongly ergodic essentially free action $\unicode[STIX]{x1D6E4}\curvearrowright (X,\unicode[STIX]{x1D707})$ on a standard measure space, the group measure space von Neumann algebra $\unicode[STIX]{x1D6E4}\ltimes L^{\infty }(X)$ is full. In this paper, we prove the same property for a wider class of groups, notably including $\text{SL}(3,\mathbb{Z})$. We also prove that for any connected simple Lie group $G$ with finite center, any lattice $\unicode[STIX]{x1D6E4}\leqslant G$, and any closed non-amenable subgroup $H\leqslant G$, the non-singular action $\unicode[STIX]{x1D6E4}\curvearrowright G/H$ is strongly ergodic and the von Neumann factor $\unicode[STIX]{x1D6E4}\ltimes L^{\infty }(G/H)$ is full.
Let be a single vertex k-graph and let be the von Neumann algebra induced from the Gelfand–Naimark–Segal (GNS) representation of a distinguished state ω of its k-graph C*-algebra . In this paper we prove the factoriality of , and furthermore determine its type when either has the little pullback property, or the intrinsic group of has rank 0. The key step to achieving this is to show that the fixed-point algebra of the modular action corresponding to ω has a unique tracial state.
Wu [‘An order characterization of commutativity for $C^{\ast }$-algebras’, Proc. Amer. Math. Soc.129 (2001), 983–987] proved that if the exponential function on the set of all positive elements of a $C^{\ast }$-algebra is monotone in the usual partial order, then the algebra in question is necessarily commutative. In this note, we present a local version of that result and obtain a characterisation of central elements in $C^{\ast }$-algebras in terms of the order.
Let $\unicode[STIX]{x1D6E4}$ be a countable discrete group that acts on a unital $C^{\ast }$-algebra $A$ through an action $\unicode[STIX]{x1D6FC}$. If $A$ has a faithful $\unicode[STIX]{x1D6FC}$-invariant tracial state $\unicode[STIX]{x1D70F}$, then $\unicode[STIX]{x1D70F}^{\prime }=\unicode[STIX]{x1D70F}\circ {\mathcal{E}}$ is a faithful tracial state of $A\rtimes _{\unicode[STIX]{x1D6FC},r}\unicode[STIX]{x1D6E4}$ where ${\mathcal{E}}:A\rtimes _{\unicode[STIX]{x1D6FC},r}\unicode[STIX]{x1D6E4}\rightarrow A$ is the canonical faithful conditional expectation. We show that $(A\rtimes _{\unicode[STIX]{x1D6FC},r}\unicode[STIX]{x1D6E4},\unicode[STIX]{x1D70F}^{\prime })$ has the Haagerup property if and only if both $(A,\unicode[STIX]{x1D70F})$ and $\unicode[STIX]{x1D6E4}$ have the Haagerup property. As a consequence, suppose that $(A\rtimes _{\unicode[STIX]{x1D6FC},r}\unicode[STIX]{x1D6E4},\unicode[STIX]{x1D70F}^{\prime })$ has the Haagerup property where $\unicode[STIX]{x1D6E4}$ has property $T$ and $A$ has strong property $T$. Then $\unicode[STIX]{x1D6E4}$ is finite and $A$ is residually finite-dimensional.
In the 1970s, Feldman and Moore classified separably acting von Neumann algebras containing Cartan maximal abelian self-adjoint subalgebras (MASAs) using measured equivalence relations and 2-cocycles on such equivalence relations. In this paper we give a new classification in terms of extensions of inverse semigroups. Our approach is more algebraic in character and less point-based than that of Feldman and Moore. As an application, we give a restatement of the spectral theorem for bimodules in terms of subsets of inverse semigroups. We also show how our viewpoint leads naturally to a description of maximal subdiagonal algebras.
Let A = C(X) ⊗ K(H), where X is a compact Hausdorff space and K(H) is the algebra of compact operators on a separable infinite-dimensional Hilbert space. Let As be the algebra of strong*-continuous functions from X to K(H). Then As/A is the inner corona algebra of A. We show that if X has no isolated points, then As/A is an essential ideal of the corona algebra of A, and Prim(As/A), the primitive ideal space of As/A, is not weakly Lindelof. If X is also first countable, then there is a natural injection from the power set of X to the lattice of closed ideals of As/A. If X = βℕ\ℕ and the continuum hypothesis (CH) is assumed, then the corona algebra of A is a proper subalgebra of the multiplier algebra of As/A. Several of the results are obtained in the more general setting of C0(X)-algebras.
We show that the property of a C*-algebra that all its Hilbert modules have a frame, in the case of σ-unital C*-algebras, is preserved under Rieffel–Morita equivalence. In particular, we show that a σ-unital continuous-trace C*-algebra with trivial Dixmier–Douady class, all of whose Hilbert modules admit a frame, has discrete spectrum. We also show this for the tensor product of any commutative C*-algebra with the C*-algebra of compact operators on any Hilbert space.
Let $E$ be a (right) Hilbert module over a $C^{\ast }$-algebra $A$. If $E$ is equipped with a left action of a second $C^{\ast }$-algebra $B$, then tensor product with $E$ gives rise to a functor from the category of Hilbert $B$-modules to the category of Hilbert $A$-modules. The purpose of this paper is to study adjunctions between functors of this sort. We shall introduce a new kind of adjunction relation, called a local adjunction, that is weaker than the standard concept from category theory. We shall give several examples, the most important of which is the functor of parabolic induction in the tempered representation theory of real reductive groups. Each local adjunction gives rise to an ordinary adjunction of functors between categories of Hilbert space representations. In this way we shall show that the parabolic induction functor has a simultaneous left and right adjoint, namely the parabolic restriction functor constructed in Clare et al. [Parabolic induction and restriction via $C^{\ast }$-algebras and Hilbert $C^{\ast }$-modules, Compos. Math.FirstView (2016), 1–33, 2].
We define the Schur multipliers of a separable von Neumann algebra with Cartan maximal abelian self-adjoint algebra , generalizing the classical Schur multipliers of (ℓ2). We characterize these as the normal -bimodule maps on . If contains a direct summand isomorphic to the hyperfinite II1 factor, then we show that the Schur multipliers arising from the extended Haagerup tensor product ⊗eh are strictly contained in the algebra of all Schur multipliers.
We discuss the half-liberation operation X → X*, for the algebraic submanifolds of the unit sphere, $X\subset S^{N-1}_\mathbb C$. There are several ways of constructing this correspondence, and we take them into account. Our main results concern the computation of the affine quantum isometry group G+(X*), for the sphere itself.
A locally compact group G is compact if and only if its convolution algebras contain non-zero (weakly) completely continuous elements. Dually, G is discrete if its function algebras contain non-zero completely continuous elements. We prove non-commutative versions of these results in the case of locally compact quantum groups.
We present a new construction of crossed-product duality for maximal coactions that uses Fischer’s work on maximalizations. Given a group $G$ and a coaction $(A,\unicode[STIX]{x1D6FF})$ we define a generalized fixed-point algebra as a certain subalgebra of $M(A\rtimes _{\unicode[STIX]{x1D6FF}}G\rtimes _{\,\widehat{\unicode[STIX]{x1D6FF}}}G)$, and recover the coaction via this double crossed product. Our goal is to formulate this duality in a category-theoretic context, and one advantage of our construction is that it breaks down into parts that are easy to handle in this regard. We first explain this for the category of nondegenerate *-homomorphisms and then, analogously, for the category of $C^{\ast }$-correspondences. Also, we outline partial results for the ‘outer’ category, which has been studied previously by the authors.
We prove that an operator system is (min, ess)-nuclear if its $C^{\ast }$-envelope is nuclear. This allows us to deduce that an operator system associated to a generating set of a countable discrete group by Farenick et al. [‘Operator systems from discrete groups’, Comm. Math. Phys.329(1) (2014), 207–238] is (min, ess)-nuclear if and only if the group is amenable. We also make a detailed comparison between ess and other operator system tensor products and show that an operator system associated to a minimal generating set of a finitely generated discrete group (respectively, a finite graph) is (min, max)-nuclear if and only if the group is of order less than or equal to three (respectively, every component of the graph is complete).
If a locally compact group G acts on a C*-algebra B, we have both full and reduced crossed products and each has a coaction of G. We investigate ‘exotic’ coactions in between the two, which are determined by certain ideals E of the Fourier–Stieltjes algebra B(G); an approach that is inspired by recent work of Brown and Guentner on new C*-group algebra completions. We actually carry out the bulk of our investigation in the general context of coactions on a C*-algebra A. Buss and Echterhoff have shown that not every coaction comes from one of these ideals, but nevertheless the ideals do generate a wide array of exotic coactions. Coactions determined by these ideals E satisfy a certain ‘E-crossed product duality’, intermediate between full and reduced duality. We give partial results concerning exotic coactions with the ultimate goal being a classification of which coactions are determined by ideals of B(G).
In this short note we present a common characterisation of the logarithmic function and the subspace of all trace zero elements in finite von Neumann factors.
This paper is about the reduced group $C^{\ast }$-algebras of real reductive groups, and about Hilbert $C^{\ast }$-modules over these $C^{\ast }$-algebras. We shall do three things. First, we shall apply theorems from the tempered representation theory of reductive groups to determine the structure of the reduced $C^{\ast }$-algebra (the result has been known for some time, but it is difficult to assemble a full treatment from the existing literature). Second, we shall use the structure of the reduced $C^{\ast }$-algebra to determine the structure of the Hilbert $C^{\ast }$-bimodule that represents the functor of parabolic induction. Third, we shall prove that the parabolic induction bimodule admits a secondary inner product, using which we can define a functor of parabolic restriction in tempered representation theory. We shall prove in a sequel to this paper that parabolic restriction is adjoint, on both the left and the right, to parabolic induction in the context of tempered unitary Hilbert space representations.