To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let ℳ be a semifinite von Neumann algebra with a faithful semifinite normal trace τ. Assume that E(0, ∞) is an M-embedded fully symmetric function space having order continuous norm and is not a superset of the set of all bounded vanishing functions on (0, ∞). In this paper, we prove that the corresponding operator space E(ℳ, τ) is also M-embedded. It extends earlier results by Werner [48, Proposition 4∙1] from the particular case of symmetric ideals of bounded operators on a separable Hilbert space to the case of symmetric spaces (consisting of possibly unbounded operators) on an arbitrary semifinite von Neumann algebra. Several applications are given, e.g., the derivation problem for noncommutative Lorentz spaces ℒp,1(ℳ, τ), 1 < p < ∞, has a positive answer.
We give necessary and sufficient conditions for nuclearity of Cuntz–Nica–Pimsner algebras for a variety of quasi-lattice ordered groups. First we deal with the free abelian lattice case. We use this as a stepping-stone to tackle product systems over quasi-lattices that are controlled by the free abelian lattice and satisfy a minimality property. Our setting accommodates examples like the Baumslag–Solitar lattice for $n=m>0$ and the right-angled Artin groups. More generally, the class of quasi-lattices for which our results apply is closed under taking semi-direct and graph products. In the process we accomplish more. Our arguments tackle Nica–Pimsner algebras that admit a faithful conditional expectation on a small fixed point algebra and a faithful copy of the coefficient algebra. This is the case for CNP-relative quotients in-between the Toeplitz–Nica–Pimsner algebra and the Cuntz–Nica–Pimsner algebra. We complete this study with the relevant results on exactness.
We consider the notion of the graph product of actions of discrete groups $\{G_{v}\}$ on a $C^{\ast }$-algebra ${\mathcal{A}}$ and show that under suitable commutativity conditions the graph product action $\star _{\unicode[STIX]{x1D6E4}}\unicode[STIX]{x1D6FC}_{v}:\star _{\unicode[STIX]{x1D6E4}}G_{v}\curvearrowright {\mathcal{A}}$ has the Haagerup property if each action $\unicode[STIX]{x1D6FC}_{v}:G_{v}\curvearrowright {\mathcal{A}}$ possesses the Haagerup property. This generalizes the known results on graph products of groups with the Haagerup property. To accomplish this, we introduce the graph product of multipliers associated to the actions and show that the graph product of positive-definite multipliers is positive definite. These results have impacts on left-transformation groupoids and give an alternative proof of a known result for coarse embeddability. We also record a cohomological characterization of the Haagerup property for group actions.
A one-sided shift of finite type $(\mathsf{X}_{A},\unicode[STIX]{x1D70E}_{A})$ determines on the one hand a Cuntz–Krieger algebra ${\mathcal{O}}_{A}$ with a distinguished abelian subalgebra ${\mathcal{D}}_{A}$ and a certain completely positive map $\unicode[STIX]{x1D70F}_{A}$ on ${\mathcal{O}}_{A}$. On the other hand, $(\mathsf{X}_{A},\unicode[STIX]{x1D70E}_{A})$ determines a groupoid ${\mathcal{G}}_{A}$ together with a certain homomorphism $\unicode[STIX]{x1D716}_{A}$ on ${\mathcal{G}}_{A}$. We show that each of these two sets of data completely characterizes the one-sided conjugacy class of $\mathsf{X}_{A}$. This strengthens a result of Cuntz and Krieger. We also exhibit an example of two irreducible shifts of finite type which are eventually conjugate but not conjugate. This provides a negative answer to a question of Matsumoto of whether eventual conjugacy implies conjugacy.
We completely classify Cartan subalgebras of dimension drop algebras with coprime parameters. More generally, we classify Cartan subalgebras of arbitrary stabilised dimension drop algebras that are non-degenerate in the sense that the dimensions of their fibres in the endpoints are maximal. Conjugacy classes by an automorphism are parametrised by certain congruence classes of matrices over the natural numbers with prescribed row and column sums. In particular, each dimension drop algebra admits only finitely many non-degenerate Cartan subalgebras up to conjugacy. As a consequence of this parametrisation, we can provide examples of subhomogeneous $\text{C}^{\ast }$-algebras with exactly $n$ Cartan subalgebras up to conjugacy. Moreover, we show that in many dimension drop algebras two Cartan subalgebras are conjugate if and only if their spectra are homeomorphic.
We show how to reconstruct a finite directed graph E from its Toeplitz algebra, its gauge action, and the canonical finite-dimensional abelian subalgebra generated by the vertex projections. We also show that if E has no sinks, then we can recover E from its Toeplitz algebra and the generalized gauge action that has, for each vertex, an independent copy of the circle acting on the generators corresponding to edges emanating from that vertex. We show by example that it is not possible to recover E from its Toeplitz algebra and gauge action alone.
We prove simplicity of all intermediate $C^{\ast }$-algebras $C_{r}^{\ast }(\unicode[STIX]{x1D6E4})\subseteq {\mathcal{B}}\subseteq \unicode[STIX]{x1D6E4}\ltimes _{r}C(X)$ in the case of minimal actions of $C^{\ast }$-simple groups $\unicode[STIX]{x1D6E4}$ on compact spaces $X$. For this, we use the notion of stationary states, recently introduced by Hartman and Kalantar [Stationary $C^{\ast }$-dynamical systems. Preprint, 2017, arXiv:1712.10133]. We show that the Powers’ averaging property holds for the reduced crossed product $\unicode[STIX]{x1D6E4}\ltimes _{r}{\mathcal{A}}$ for any action $\unicode[STIX]{x1D6E4}\curvearrowright {\mathcal{A}}$ of a $C^{\ast }$-simple group $\unicode[STIX]{x1D6E4}$ on a unital $C^{\ast }$-algebra ${\mathcal{A}}$, and use it to prove a one-to-one correspondence between stationary states on ${\mathcal{A}}$ and those on $\unicode[STIX]{x1D6E4}\ltimes _{r}{\mathcal{A}}$.
Given a free unitary quantum group $G=A_{u}(F)$, with $F$ not a unitary $2\times 2$ matrix, we show that the Martin boundary of the dual of $G$ with respect to any $G$-${\hat{G}}$-invariant, irreducible, finite-range quantum random walk coincides with the topological boundary defined by Vaes and Vander Vennet. This can be thought of as a quantum analogue of the fact that the Martin boundary of a free group coincides with the space of ends of its Cayley tree.
This note corrects an error in our paper “A Galois correspondence for reduced crossed products of unital simple $\text{C}^{\ast }$-algebras by discrete groups”, http://dx.doi.org/10.4153/CJM-2018-014-6. The main results of the original paper are unchanged.
We show that Matui’s HK conjecture holds for groupoids of unstable equivalence relations and their corresponding $C^{\ast }$-algebras on one-dimensional solenoids.
We introduce the concept of strong property $(\mathbb{B})$ with a constant for Banach algebras and, by applying a certain analysis on the Fourier algebra of the unit circle, we show that all C*-algebras and group algebras have the strong property $(\mathbb{B})$ with a constant given by $288\unicode[STIX]{x1D70B}(1+\sqrt{2})$. We then use this result to find a concrete upper bound for the hyperreflexivity constant of ${\mathcal{Z}}^{n}(A,X)$, the space of bounded $n$-cocycles from $A$ into $X$, where $A$ is a C*-algebra or the group algebra of a group with an open subgroup of polynomial growth and $X$ is a Banach $A$-bimodule for which ${\mathcal{H}}^{n+1}(A,X)$ is a Banach space. As another application, we show that for a locally compact amenable group $G$ and $1<p<\infty$, the space $CV_{P}(G)$ of convolution operators on $L^{p}(G)$ is hyperreflexive with a constant given by $384\unicode[STIX]{x1D70B}^{2}(1+\sqrt{2})$. This is the generalization of a well-known result of Christensen [‘Extensions of derivations. II’, Math. Scand.50(1) (1982), 111–122] for $p=2$.
Let M be an arbitrary factor and $\sigma : \Gamma \curvearrowright M$ an action of a discrete group. In this paper, we study the fullness of the crossed product $M \rtimes _\sigma \Gamma $. When Γ is amenable, we obtain a complete characterization: the crossed product factor $M \rtimes _\sigma \Gamma $ is full if and only if M is full and the quotient map $\overline {\sigma } : \Gamma \rightarrow {\rm out}(M)$ has finite kernel and discrete image. This answers the question of Jones from [11]. When M is full and Γ is arbitrary, we give a sufficient condition for $M \rtimes _\sigma \Gamma $ to be full which generalizes both Jones' criterion and Choda's criterion. In particular, we show that if M is any full factor (possibly of type III) and Γ is a non-inner amenable group, then the crossed product $M \rtimes _\sigma \Gamma $ is full.
A crossed product functor is said to be injective if it takes injective morphisms to injective morphisms. In this paper we show that every locally compact group $G$ admits a maximal injective crossed product $A\mapsto A\rtimes _{\text{inj}}G$. Moreover, we give an explicit construction of this functor that depends only on the maximal crossed product and the existence of $G$-injective $C^{\ast }$-algebras; this is a sort of ‘dual’ result to the construction of the minimal exact crossed product functor, the latter having been studied for its relationship to the Baum–Connes conjecture. It turns out that $\rtimes _{\text{inj}}$ has interesting connections to exactness, the local lifting property, amenable traces, and the weak expectation property.
We consider a family of higher-dimensional non-commutative tori, which are twisted analogues of the algebras of continuous functions on ordinary tori and their Toeplitz extensions. Just as solenoids are inverse limits of tori, our Toeplitz non-commutative solenoids are direct limits of the Toeplitz extensions of non-commutative tori. We consider natural dynamics on these Toeplitz algebras, and we compute the equilibrium states for these dynamics. We find a large simplex of equilibrium states at each positive inverse temperature, parametrized by the probability measures on an (ordinary) solenoid.
Wieler has shown that every irreducible Smale space with totally disconnected stable sets is a solenoid (i.e., obtained via a stationary inverse limit construction). Using her construction, we show that the associated stable $C^{\ast }$-algebra is the stationary inductive limit of a $C^{\ast }$-stable Fell algebra that has a compact spectrum and trivial Dixmier–Douady invariant. This result applies in particular to Williams solenoids along with other examples. Beyond the structural implications of this inductive limit, one can use this result to, in principle, compute the $K$-theory of the stable $C^{\ast }$-algebra. A specific one-dimensional Smale space (the $aab/ab$-solenoid) is considered as an illustrative running example throughout.
In this article, we consider a twisted partial action $\unicode[STIX]{x1D6FC}$ of a group $G$ on an associative ring $R$ and its associated partial crossed product $R\ast _{\unicode[STIX]{x1D6FC}}^{w}G$. We provide necessary and sufficient conditions for the commutativity of $R\ast _{\unicode[STIX]{x1D6FC}}^{w}G$ when the twisted partial action $\unicode[STIX]{x1D6FC}$ is unital. Moreover, we study necessary and sufficient conditions for the simplicity of $R\ast _{\unicode[STIX]{x1D6FC}}^{w}G$ in the following cases: (i) $G$ is abelian; (ii) $R$ is maximal commutative in $R\ast _{\unicode[STIX]{x1D6FC}}^{w}G$; (iii) $C_{R\ast _{\unicode[STIX]{x1D6FC}}^{w}G}(Z(R))$ is simple; (iv) $G$ is hypercentral. When $R=C_{0}(X)$ is the algebra of continuous functions defined on a locally compact and Hausdorff space $X$, with complex values that vanish at infinity, and $C_{0}(X)\ast _{\unicode[STIX]{x1D6FC}}G$ is the associated partial skew group ring of a partial action $\unicode[STIX]{x1D6FC}$ of a topological group $G$ on $C_{0}(X)$, we study the simplicity of $C_{0}(X)\ast _{\unicode[STIX]{x1D6FC}}G$ by using topological properties of $X$ and the results about the simplicity of $R\ast _{\unicode[STIX]{x1D6FC}}^{w}G$.
The modular Gromov–Hausdorff propinquity is a distance on classes of modules endowed with quantum metric information, in the form of a metric form of a connection and a left Hilbert module structure. This paper proves that the family of Heisenberg modules over quantum two tori, when endowed with their canonical connections, form a family of metrized quantum vector bundles, as a first step in proving that Heisenberg modules form a continuous family for the modular Gromov–Hausdorff propinquity.
We compute the homology groups of transformation groupoids associated with odometers and show that certain $(\mathbb{Z}\rtimes \mathbb{Z}_{2})$-odometers give rise to counterexamples to the HK conjecture, which relates the homology of an essentially principal, minimal, ample groupoid $G$ with the K-theory of $C_{r}^{\ast }(G)$. We also show that transformation groupoids of odometers satisfy the AH conjecture.
The semigroups of unital extensions of separable C*-algebras come in two flavours: a strong and a weak version. By the unital Ext-groups, we mean the groups of invertible elements in these semigroups. We use the unital Ext-groups to obtain K-theoretic classification of both unital and non-unital extensions of C*-algebras, and in particular we obtain a complete K-theoretic classification of full extensions of UCT Kirchberg algebras by stable AF algebras.
We adapt the classical notion of building models by games to the setting of continuous model theory. As an application, we study to what extent canonical operator algebras are enforceable models. For example, we show that the hyperfinite II1 factor is an enforceable II1 factor if and only if the Connes Embedding Problem has a positive solution. We also show that the set of continuous functions on the pseudoarc is an enforceable model of the theory of unital, projectionless, abelian $\text{C}^{\ast }$-algebras and use this to show that it is the prime model of its theory.