We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This note corrects an error in our paper “A Galois correspondence for reduced crossed products of unital simple $\text{C}^{\ast }$-algebras by discrete groups”, http://dx.doi.org/10.4153/CJM-2018-014-6. The main results of the original paper are unchanged.
We show that Matui’s HK conjecture holds for groupoids of unstable equivalence relations and their corresponding $C^{\ast }$-algebras on one-dimensional solenoids.
We introduce the concept of strong property $(\mathbb{B})$ with a constant for Banach algebras and, by applying a certain analysis on the Fourier algebra of the unit circle, we show that all C*-algebras and group algebras have the strong property $(\mathbb{B})$ with a constant given by $288\unicode[STIX]{x1D70B}(1+\sqrt{2})$. We then use this result to find a concrete upper bound for the hyperreflexivity constant of ${\mathcal{Z}}^{n}(A,X)$, the space of bounded $n$-cocycles from $A$ into $X$, where $A$ is a C*-algebra or the group algebra of a group with an open subgroup of polynomial growth and $X$ is a Banach $A$-bimodule for which ${\mathcal{H}}^{n+1}(A,X)$ is a Banach space. As another application, we show that for a locally compact amenable group $G$ and $1<p<\infty$, the space $CV_{P}(G)$ of convolution operators on $L^{p}(G)$ is hyperreflexive with a constant given by $384\unicode[STIX]{x1D70B}^{2}(1+\sqrt{2})$. This is the generalization of a well-known result of Christensen [‘Extensions of derivations. II’, Math. Scand.50(1) (1982), 111–122] for $p=2$.
Let M be an arbitrary factor and $\sigma : \Gamma \curvearrowright M$ an action of a discrete group. In this paper, we study the fullness of the crossed product $M \rtimes _\sigma \Gamma $. When Γ is amenable, we obtain a complete characterization: the crossed product factor $M \rtimes _\sigma \Gamma $ is full if and only if M is full and the quotient map $\overline {\sigma } : \Gamma \rightarrow {\rm out}(M)$ has finite kernel and discrete image. This answers the question of Jones from [11]. When M is full and Γ is arbitrary, we give a sufficient condition for $M \rtimes _\sigma \Gamma $ to be full which generalizes both Jones' criterion and Choda's criterion. In particular, we show that if M is any full factor (possibly of type III) and Γ is a non-inner amenable group, then the crossed product $M \rtimes _\sigma \Gamma $ is full.
A crossed product functor is said to be injective if it takes injective morphisms to injective morphisms. In this paper we show that every locally compact group $G$ admits a maximal injective crossed product $A\mapsto A\rtimes _{\text{inj}}G$. Moreover, we give an explicit construction of this functor that depends only on the maximal crossed product and the existence of $G$-injective $C^{\ast }$-algebras; this is a sort of ‘dual’ result to the construction of the minimal exact crossed product functor, the latter having been studied for its relationship to the Baum–Connes conjecture. It turns out that $\rtimes _{\text{inj}}$ has interesting connections to exactness, the local lifting property, amenable traces, and the weak expectation property.
We consider a family of higher-dimensional non-commutative tori, which are twisted analogues of the algebras of continuous functions on ordinary tori and their Toeplitz extensions. Just as solenoids are inverse limits of tori, our Toeplitz non-commutative solenoids are direct limits of the Toeplitz extensions of non-commutative tori. We consider natural dynamics on these Toeplitz algebras, and we compute the equilibrium states for these dynamics. We find a large simplex of equilibrium states at each positive inverse temperature, parametrized by the probability measures on an (ordinary) solenoid.
Wieler has shown that every irreducible Smale space with totally disconnected stable sets is a solenoid (i.e., obtained via a stationary inverse limit construction). Using her construction, we show that the associated stable $C^{\ast }$-algebra is the stationary inductive limit of a $C^{\ast }$-stable Fell algebra that has a compact spectrum and trivial Dixmier–Douady invariant. This result applies in particular to Williams solenoids along with other examples. Beyond the structural implications of this inductive limit, one can use this result to, in principle, compute the $K$-theory of the stable $C^{\ast }$-algebra. A specific one-dimensional Smale space (the $aab/ab$-solenoid) is considered as an illustrative running example throughout.
In this article, we consider a twisted partial action $\unicode[STIX]{x1D6FC}$ of a group $G$ on an associative ring $R$ and its associated partial crossed product $R\ast _{\unicode[STIX]{x1D6FC}}^{w}G$. We provide necessary and sufficient conditions for the commutativity of $R\ast _{\unicode[STIX]{x1D6FC}}^{w}G$ when the twisted partial action $\unicode[STIX]{x1D6FC}$ is unital. Moreover, we study necessary and sufficient conditions for the simplicity of $R\ast _{\unicode[STIX]{x1D6FC}}^{w}G$ in the following cases: (i) $G$ is abelian; (ii) $R$ is maximal commutative in $R\ast _{\unicode[STIX]{x1D6FC}}^{w}G$; (iii) $C_{R\ast _{\unicode[STIX]{x1D6FC}}^{w}G}(Z(R))$ is simple; (iv) $G$ is hypercentral. When $R=C_{0}(X)$ is the algebra of continuous functions defined on a locally compact and Hausdorff space $X$, with complex values that vanish at infinity, and $C_{0}(X)\ast _{\unicode[STIX]{x1D6FC}}G$ is the associated partial skew group ring of a partial action $\unicode[STIX]{x1D6FC}$ of a topological group $G$ on $C_{0}(X)$, we study the simplicity of $C_{0}(X)\ast _{\unicode[STIX]{x1D6FC}}G$ by using topological properties of $X$ and the results about the simplicity of $R\ast _{\unicode[STIX]{x1D6FC}}^{w}G$.
The modular Gromov–Hausdorff propinquity is a distance on classes of modules endowed with quantum metric information, in the form of a metric form of a connection and a left Hilbert module structure. This paper proves that the family of Heisenberg modules over quantum two tori, when endowed with their canonical connections, form a family of metrized quantum vector bundles, as a first step in proving that Heisenberg modules form a continuous family for the modular Gromov–Hausdorff propinquity.
We compute the homology groups of transformation groupoids associated with odometers and show that certain $(\mathbb{Z}\rtimes \mathbb{Z}_{2})$-odometers give rise to counterexamples to the HK conjecture, which relates the homology of an essentially principal, minimal, ample groupoid $G$ with the K-theory of $C_{r}^{\ast }(G)$. We also show that transformation groupoids of odometers satisfy the AH conjecture.
The semigroups of unital extensions of separable C*-algebras come in two flavours: a strong and a weak version. By the unital Ext-groups, we mean the groups of invertible elements in these semigroups. We use the unital Ext-groups to obtain K-theoretic classification of both unital and non-unital extensions of C*-algebras, and in particular we obtain a complete K-theoretic classification of full extensions of UCT Kirchberg algebras by stable AF algebras.
We adapt the classical notion of building models by games to the setting of continuous model theory. As an application, we study to what extent canonical operator algebras are enforceable models. For example, we show that the hyperfinite II1 factor is an enforceable II1 factor if and only if the Connes Embedding Problem has a positive solution. We also show that the set of continuous functions on the pseudoarc is an enforceable model of the theory of unital, projectionless, abelian $\text{C}^{\ast }$-algebras and use this to show that it is the prime model of its theory.
We establish the following results on higher order ${\mathcal{S}}^{p}$-differentiability, $1<p<\infty$, of the operator function arising from a continuous scalar function $f$ and self-adjoint operators defined on a fixed separable Hilbert space:
(i)$f$ is $n$ times continuously Fréchet ${\mathcal{S}}^{p}$-differentiable at every bounded self-adjoint operator if and only if $f\in C^{n}(\mathbb{R})$;
(ii) if $f^{\prime },\ldots ,f^{(n-1)}\in C_{b}(\mathbb{R})$ and $f^{(n)}\in C_{0}(\mathbb{R})$, then $f$ is $n$ times continuously Fréchet ${\mathcal{S}}^{p}$-differentiable at every self-adjoint operator;
(iii) if $f^{\prime },\ldots ,f^{(n)}\in C_{b}(\mathbb{R})$, then $f$ is $n-1$ times continuously Fréchet ${\mathcal{S}}^{p}$-differentiable and $n$ times Gâteaux ${\mathcal{S}}^{p}$-differentiable at every self-adjoint operator.
We also prove that if $f\in B_{\infty 1}^{n}(\mathbb{R})\cap B_{\infty 1}^{1}(\mathbb{R})$, then $f$ is $n$ times continuously Fréchet ${\mathcal{S}}^{q}$-differentiable, $1\leqslant q<\infty$, at every self-adjoint operator. These results generalize and extend analogous results of Kissin et al. (Proc. Lond. Math. Soc. (3)108(3) (2014), 327–349) to arbitrary $n$ and unbounded operators as well as substantially extend the results of Azamov et al. (Canad. J. Math.61(2) (2009), 241–263); Coine et al. (J. Funct. Anal.; doi:10.1016/j.jfa.2018.09.005); Peller (J. Funct. Anal.233(2) (2006), 515–544) on higher order ${\mathcal{S}}^{p}$-differentiability of $f$ in a certain Wiener class, Gâteaux ${\mathcal{S}}^{2}$-differentiability of $f\in C^{n}(\mathbb{R})$ with $f^{\prime },\ldots ,f^{(n)}\in C_{b}(\mathbb{R})$, and Gâteaux ${\mathcal{S}}^{q}$-differentiability of $f$ in the intersection of the Besov classes $B_{\infty 1}^{n}(\mathbb{R})\cap B_{\infty 1}^{1}(\mathbb{R})$. As an application, we extend ${\mathcal{S}}^{p}$-estimates for operator Taylor remainders to a broad set of symbols. Finally, we establish explicit formulas for Fréchet differentials and Gâteaux derivatives.
Let $n$ be a positive integer. A $C^{\ast }$-algebra is said to be $n$-subhomogeneous if all its irreducible representations have dimension at most $n$. We give various approximation properties characterising $n$-subhomogeneous $C^{\ast }$-algebras.
Let 𝔻n be the open unit polydisc in ℂn, $n \ges 1$, and let H2(𝔻n) be the Hardy space over 𝔻n. For $n\ges 3$, we show that if θ ∈ H∞(𝔻n) is an inner function, then the n-tuple of commuting operators $(C_{z_1}, \ldots , C_{z_n})$ on the Beurling type quotient module ${\cal Q}_{\theta }$ is not essentially normal, where
Rudin's quotient modules of H2(𝔻2) are also shown to be not essentially normal. We prove several results concerning boundary representations of C*-algebras corresponding to different classes of quotient modules including doubly commuting quotient modules and homogeneous quotient modules.
In this paper, we revisit the theory of induced representations in the setting of locally compact quantum groups. In the case of induction from open quantum subgroups, we show that constructions of Kustermans and Vaes are equivalent to the classical, and much simpler, construction of Rieffel. We also prove in general setting the continuity of induction in the sense of Vaes with respect to weak containment.
We investigate factoriality, Connes' type III invariants and fullness of arbitrary amalgamated free product von Neumann algebras using Popa's deformation/rigidity theory. Among other things, we generalize many previous structural results on amalgamated free product von Neumann algebras and we obtain new examples of full amalgamated free product factors for which we can explicitely compute Connes' type III invariants.
We show that the partial transposes of complex Wishart random matrices are asymptotically free. We also investigate regimes where the number of blocks is fixed but the size of the blocks increases. This gives an example where the partial transpose produces freeness at the operator level. Finally, we investigate the case of real Wishart matrices.
We characterize the class of RFD $C^{\ast }$-algebras as those containing a dense subset of elements that attain their norm under a finite-dimensional representation. We show further that this subset is the whole space precisely when every irreducible representation of the $C^{\ast }$-algebra is finite-dimensional, which is equivalent to the $C^{\ast }$-algebra having no simple infinite-dimensional AF subquotient. We apply techniques from this proof to show the existence of elements in more general classes of $C^{\ast }$-algebras whose norms in finite-dimensional representations fit certain prescribed properties.
In the first part of the paper, we introduce notions of asymptotic continuous orbit equivalence and asymptotic conjugacy in Smale spaces and characterize them in terms of their asymptotic Ruelle algebras with their dual actions. In the second part, we introduce a groupoid $C^{\ast }$-algebra that is an extended version of the asymptotic Ruelle algebra from a Smale space and study the extended Ruelle algebras from the view points of Cuntz–Krieger algebras. As a result, the asymptotic Ruelle algebra is realized as a fixed point algebra of the extended Ruelle algebra under certain circle action.