We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of this paper is to study the heat kernel and the jump kernel of the Dirichlet form associated to the ultrametric Cantor set $\unicode[STIX]{x2202}{\mathcal{B}}_{\unicode[STIX]{x1D6EC}}$ that is the infinite path space of the stationary $k$-Bratteli diagram ${\mathcal{B}}_{\unicode[STIX]{x1D6EC}}$, where $\unicode[STIX]{x1D6EC}$ is a finite strongly connected $k$-graph. The Dirichlet form which we are interested in is induced by an even spectral triple $(C_{\operatorname{Lip}}(\unicode[STIX]{x2202}{\mathcal{B}}_{\unicode[STIX]{x1D6EC}}),\unicode[STIX]{x1D70B}_{\unicode[STIX]{x1D719}},{\mathcal{H}},D,\unicode[STIX]{x1D6E4})$ and is given by
where $\unicode[STIX]{x1D6EF}$ is the space of choice functions on $\unicode[STIX]{x2202}{\mathcal{B}}_{\unicode[STIX]{x1D6EC}}\times \unicode[STIX]{x2202}{\mathcal{B}}_{\unicode[STIX]{x1D6EC}}$. There are two ultrametrics, $d^{(s)}$ and $d_{w_{\unicode[STIX]{x1D6FF}}}$, on $\unicode[STIX]{x2202}{\mathcal{B}}_{\unicode[STIX]{x1D6EC}}$ which make the infinite path space $\unicode[STIX]{x2202}{\mathcal{B}}_{\unicode[STIX]{x1D6EC}}$ an ultrametric Cantor set. The former $d^{(s)}$ is associated to the eigenvalues of the Laplace–Beltrami operator $\unicode[STIX]{x1D6E5}_{s}$ associated to $Q_{s}$, and the latter $d_{w_{\unicode[STIX]{x1D6FF}}}$ is associated to a weight function $w_{\unicode[STIX]{x1D6FF}}$ on ${\mathcal{B}}_{\unicode[STIX]{x1D6EC}}$, where $\unicode[STIX]{x1D6FF}\in (0,1)$. We show that the Perron–Frobenius measure $\unicode[STIX]{x1D707}$ on $\unicode[STIX]{x2202}{\mathcal{B}}_{\unicode[STIX]{x1D6EC}}$ has the volume-doubling property with respect to both $d^{(s)}$ and $d_{w_{\unicode[STIX]{x1D6FF}}}$ and we study the asymptotic behavior of the heat kernel associated to $Q_{s}$. Moreover, we show that the Dirichlet form $Q_{s}$ coincides with a Dirichlet form ${\mathcal{Q}}_{J_{s},\unicode[STIX]{x1D707}}$ which is associated to a jump kernel $J_{s}$ and the measure $\unicode[STIX]{x1D707}$ on $\unicode[STIX]{x2202}{\mathcal{B}}_{\unicode[STIX]{x1D6EC}}$, and we investigate the asymptotic behavior and moments of displacements of the process.
A Banach algebra $A$ is said to be a zero Jordan product determined Banach algebra if, for every Banach space $X$, every bilinear map $\unicode[STIX]{x1D711}:A\times A\rightarrow X$ satisfying $\unicode[STIX]{x1D711}(a,b)=0$ whenever $a$, $b\in A$ are such that $ab+ba=0$, is of the form $\unicode[STIX]{x1D711}(a,b)=\unicode[STIX]{x1D70E}(ab+ba)$ for some continuous linear map $\unicode[STIX]{x1D70E}$. We show that all $C^{\ast }$-algebras and all group algebras $L^{1}(G)$ of amenable locally compact groups have this property and also discuss some applications.
We provide a class of separable II1 factors $M$ whose central sequence algebra is not the ‘tail’ algebra associated with any decreasing sequence of von Neumann subalgebras of $M$. This settles a question of McDuff [On residual sequences in a II1 factor, J. Lond. Math. Soc. (2) (1971), 273–280].
We study the second dual algebra of a Banach algebra and related problems. We resolve some questions raised by Ülger, which are related to Arens products. We then discuss a question of Gulick on the radical of the second dual algebra of the group algebra of a discrete abelian group and give an application of Arens regularity to Fourier and Fourier–Stieltjes transforms.
Let $G$ be a second countable locally compact Hausdorff topological group and $P$ be a closed subsemigroup of $G$ containing the identity element $e\in G$. Assume that the interior of $P$ is dense in $P$. Let $\unicode[STIX]{x1D6FC}=\{{\unicode[STIX]{x1D6FC}_{x}\}}_{x\in P}$ be a semigroup of unital normal $\ast$-endomorphisms of a von Neumann algebra $M$ with separable predual satisfying a natural measurability hypothesis. We show that $\unicode[STIX]{x1D6FC}$ is an $E_{0}$-semigroup over $P$ on $M$.
In this paper, we investigate noncommutative symmetric and asymmetric maximal inequalities associated with martingale transforms and fractional integrals. Our proofs depend on some recent advances on algebraic atomic decomposition and the noncommutative Gundy decomposition. We also prove several fractional maximal inequalities.
We consider fibrewise singly generated Fell bundles over étale groupoids. Given a continuous real-valued 1-cocycle on the groupoid, there is a natural dynamics on the cross-sectional algebra of the Fell bundle. We study the Kubo–Martin–Schwinger equilibrium states for this dynamics. Following work of Neshveyev on equilibrium states on groupoid C*-algebras, we describe the equilibrium states of the cross-sectional algebra in terms of measurable fields of states on the C*-algebras of the restrictions of the Fell bundle to the isotropy subgroups of the groupoid. As a special case, we obtain a description of the trace space of the cross-sectional algebra. We apply our result to generalise Neshveyev’s main theorem to twisted groupoid C*-algebras, and then apply this to twisted C*-algebras of strongly connected finite k-graphs.
We study compact group actions with finite Rokhlin dimension, particularly in relation to crossed products. For example, we characterize the duals of such actions, generalizing previous partial results for the Rokhlin property. As an application, we determine the ideal structure of their crossed products. Under the assumption of so-called commuting towers, we show that taking crossed products by such actions preserves a number of relevant classes of $C^{\ast }$-algebras, including: $D$-absorbing $C^{\ast }$-algebras, where $D$ is a strongly self-absorbing $C^{\ast }$-algebra; stable $C^{\ast }$-algebras; $C^{\ast }$-algebras with finite nuclear dimension (or decomposition rank); $C^{\ast }$-algebras with finite stable rank (or real rank); and $C^{\ast }$-algebras whose $K$-theory is either trivial, rational, or $n$-divisible for $n\in \mathbb{N}$. The combination of nuclearity and the universal coefficient theorem (UCT) is also shown to be preserved by these actions. Some of these results are new even in the well-studied case of the Rokhlin property. Additionally, and under some technical assumptions, we show that finite Rokhlin dimension with commuting towers implies the (weak) tracial Rokhlin property. At the core of our arguments is a certain local approximation of the crossed product by a continuous $C(X)$-algebra with fibers that are stably isomorphic to the underlying algebra. The space $X$ is computed in some cases of interest, and we use its description to construct a $\mathbb{Z}_{2}$-action on a unital AF-algebra and on a unital Kirchberg algebra satisfying the UCT, whose Rokhlin dimensions with and without commuting towers are finite but do not agree.
We answer a question of Skalski and Sołan (2016) about inner faithfulness of the Curran’s map of extending a quantum increasing sequence to a quantum permutation. Roughly speaking, we find a inductive setting in which the inner faithfulness of Curran’s map can be boiled down to inner faithfulness of similar map for smaller algebras and then rely on inductive generation result for quantum permutation groups of Brannan, Chirvasitu and Freslon (2018).
We investigate how the fixed point algebra of a C*-dynamical system can differ from the underlying C*-algebra. For any exact group Γ and any infinite group Λ, we construct an outer action of Λ on the Cuntz algebra 𝒪2 whose fixed point algebra is almost equal to the reduced group C*-algebra ${\rm C}_{\rm r}^* (\Gamma)$. Moreover, we show that every infinite group admits outer actions on all Kirchberg algebras whose fixed point algebras fail the completely bounded approximation property.
Kaplansky introduced the notions of CCR and GCR $C^{\ast }$-algebras, because they have a tractable representation theory. Many years later, he introduced the notions of CCR and GCR rings. In this paper we characterize when the algebra of an ample groupoid over a field is CCR and GCR. The results turn out to be exact analogues of the corresponding characterization of locally compact groupoids with CCR and GCR $C^{\ast }$-algebras. As a consequence, we classify the CCR and GCR Leavitt path algebras.
This paper concerns HH-relations in the lattices P(M) of all projections of W*-algebras M. If M is a finite algebra, all these relations are generated by trails in P(M). If M is an infinite countably decomposable factor, they are either generated by trails or associated with them.
Let ℳ be a semifinite von Neumann algebra with a faithful semifinite normal trace τ. Assume that E(0, ∞) is an M-embedded fully symmetric function space having order continuous norm and is not a superset of the set of all bounded vanishing functions on (0, ∞). In this paper, we prove that the corresponding operator space E(ℳ, τ) is also M-embedded. It extends earlier results by Werner [48, Proposition 4∙1] from the particular case of symmetric ideals of bounded operators on a separable Hilbert space to the case of symmetric spaces (consisting of possibly unbounded operators) on an arbitrary semifinite von Neumann algebra. Several applications are given, e.g., the derivation problem for noncommutative Lorentz spaces ℒp,1(ℳ, τ), 1 < p < ∞, has a positive answer.
We give necessary and sufficient conditions for nuclearity of Cuntz–Nica–Pimsner algebras for a variety of quasi-lattice ordered groups. First we deal with the free abelian lattice case. We use this as a stepping-stone to tackle product systems over quasi-lattices that are controlled by the free abelian lattice and satisfy a minimality property. Our setting accommodates examples like the Baumslag–Solitar lattice for $n=m>0$ and the right-angled Artin groups. More generally, the class of quasi-lattices for which our results apply is closed under taking semi-direct and graph products. In the process we accomplish more. Our arguments tackle Nica–Pimsner algebras that admit a faithful conditional expectation on a small fixed point algebra and a faithful copy of the coefficient algebra. This is the case for CNP-relative quotients in-between the Toeplitz–Nica–Pimsner algebra and the Cuntz–Nica–Pimsner algebra. We complete this study with the relevant results on exactness.
We consider the notion of the graph product of actions of discrete groups $\{G_{v}\}$ on a $C^{\ast }$-algebra ${\mathcal{A}}$ and show that under suitable commutativity conditions the graph product action $\star _{\unicode[STIX]{x1D6E4}}\unicode[STIX]{x1D6FC}_{v}:\star _{\unicode[STIX]{x1D6E4}}G_{v}\curvearrowright {\mathcal{A}}$ has the Haagerup property if each action $\unicode[STIX]{x1D6FC}_{v}:G_{v}\curvearrowright {\mathcal{A}}$ possesses the Haagerup property. This generalizes the known results on graph products of groups with the Haagerup property. To accomplish this, we introduce the graph product of multipliers associated to the actions and show that the graph product of positive-definite multipliers is positive definite. These results have impacts on left-transformation groupoids and give an alternative proof of a known result for coarse embeddability. We also record a cohomological characterization of the Haagerup property for group actions.
A one-sided shift of finite type $(\mathsf{X}_{A},\unicode[STIX]{x1D70E}_{A})$ determines on the one hand a Cuntz–Krieger algebra ${\mathcal{O}}_{A}$ with a distinguished abelian subalgebra ${\mathcal{D}}_{A}$ and a certain completely positive map $\unicode[STIX]{x1D70F}_{A}$ on ${\mathcal{O}}_{A}$. On the other hand, $(\mathsf{X}_{A},\unicode[STIX]{x1D70E}_{A})$ determines a groupoid ${\mathcal{G}}_{A}$ together with a certain homomorphism $\unicode[STIX]{x1D716}_{A}$ on ${\mathcal{G}}_{A}$. We show that each of these two sets of data completely characterizes the one-sided conjugacy class of $\mathsf{X}_{A}$. This strengthens a result of Cuntz and Krieger. We also exhibit an example of two irreducible shifts of finite type which are eventually conjugate but not conjugate. This provides a negative answer to a question of Matsumoto of whether eventual conjugacy implies conjugacy.
We completely classify Cartan subalgebras of dimension drop algebras with coprime parameters. More generally, we classify Cartan subalgebras of arbitrary stabilised dimension drop algebras that are non-degenerate in the sense that the dimensions of their fibres in the endpoints are maximal. Conjugacy classes by an automorphism are parametrised by certain congruence classes of matrices over the natural numbers with prescribed row and column sums. In particular, each dimension drop algebra admits only finitely many non-degenerate Cartan subalgebras up to conjugacy. As a consequence of this parametrisation, we can provide examples of subhomogeneous $\text{C}^{\ast }$-algebras with exactly $n$ Cartan subalgebras up to conjugacy. Moreover, we show that in many dimension drop algebras two Cartan subalgebras are conjugate if and only if their spectra are homeomorphic.
We show how to reconstruct a finite directed graph E from its Toeplitz algebra, its gauge action, and the canonical finite-dimensional abelian subalgebra generated by the vertex projections. We also show that if E has no sinks, then we can recover E from its Toeplitz algebra and the generalized gauge action that has, for each vertex, an independent copy of the circle acting on the generators corresponding to edges emanating from that vertex. We show by example that it is not possible to recover E from its Toeplitz algebra and gauge action alone.
We prove simplicity of all intermediate $C^{\ast }$-algebras $C_{r}^{\ast }(\unicode[STIX]{x1D6E4})\subseteq {\mathcal{B}}\subseteq \unicode[STIX]{x1D6E4}\ltimes _{r}C(X)$ in the case of minimal actions of $C^{\ast }$-simple groups $\unicode[STIX]{x1D6E4}$ on compact spaces $X$. For this, we use the notion of stationary states, recently introduced by Hartman and Kalantar [Stationary $C^{\ast }$-dynamical systems. Preprint, 2017, arXiv:1712.10133]. We show that the Powers’ averaging property holds for the reduced crossed product $\unicode[STIX]{x1D6E4}\ltimes _{r}{\mathcal{A}}$ for any action $\unicode[STIX]{x1D6E4}\curvearrowright {\mathcal{A}}$ of a $C^{\ast }$-simple group $\unicode[STIX]{x1D6E4}$ on a unital $C^{\ast }$-algebra ${\mathcal{A}}$, and use it to prove a one-to-one correspondence between stationary states on ${\mathcal{A}}$ and those on $\unicode[STIX]{x1D6E4}\ltimes _{r}{\mathcal{A}}$.
Given a free unitary quantum group $G=A_{u}(F)$, with $F$ not a unitary $2\times 2$ matrix, we show that the Martin boundary of the dual of $G$ with respect to any $G$-${\hat{G}}$-invariant, irreducible, finite-range quantum random walk coincides with the topological boundary defined by Vaes and Vander Vennet. This can be thought of as a quantum analogue of the fact that the Martin boundary of a free group coincides with the space of ends of its Cayley tree.