To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce certain $C^*$-algebras and k-graphs associated to k finite-dimensional unitary representations $\rho _1,\ldots ,\rho _k$ of a compact group G. We define a higher rank Doplicher-Roberts algebra $\mathcal {O}_{\rho _1,\ldots ,\rho _k}$, constructed from intertwiners of tensor powers of these representations. Under certain conditions, we show that this $C^*$-algebra is isomorphic to a corner in the $C^*$-algebra of a row-finite rank k graph $\Lambda $ with no sources. For G finite and $\rho _i$ faithful of dimension at least two, this graph is irreducible, it has vertices $\hat {G}$ and the edges are determined by k commuting matrices obtained from the character table of the group. We illustrate this with some examples when $\mathcal {O}_{\rho _1,\ldots ,\rho _k}$ is simple and purely infinite, and with some K-theory computations.
Given a self-similar set K defined from an iterated function system $\Gamma =(\gamma _{1},\ldots ,\gamma _{d})$ and a set of functions $H=\{h_{i}:K\to \mathbb {R}\}_{i=1}^{d}$ satisfying suitable conditions, we define a generalized gauge action on Kajiwara–Watatani algebras $\mathcal {O}_{\Gamma }$ and their Toeplitz extensions $\mathcal {T}_{\Gamma }$. We then characterize the KMS states for this action. For each $\beta \in (0,\infty )$, there is a Ruelle operator $\mathcal {L}_{H,\beta }$, and the existence of KMS states at inverse temperature $\beta $ is related to this operator. The critical inverse temperature $\beta _{c}$ is such that $\mathcal {L}_{H,\beta _{c}}$ has spectral radius 1. If $\beta <\beta _{c}$, there are no KMS states on $\mathcal {O}_{\Gamma }$ and $\mathcal {T}_{\Gamma }$; if $\beta =\beta _{c}$, there is a unique KMS state on $\mathcal {O}_{\Gamma }$ and $\mathcal {T}_{\Gamma }$ which is given by the eigenmeasure of $\mathcal {L}_{H,\beta _{c}}$; and if $\beta>\beta _{c}$, including $\beta =\infty $, the extreme points of the set of KMS states on $\mathcal {T}_{\Gamma }$ are parametrized by the elements of K and on $\mathcal {O}_{\Gamma }$ by the set of branched points.
We construct two types of unital separable simple $C^*$-algebras: $A_z^{C_1}$ and $A_z^{C_2}$, one exact but not amenable, the other nonexact. Both have the same Elliott invariant as the Jiang–Su algebra – namely, $A_z^{C_i}$ has a unique tracial state,
and $K_{1}\left (A_z^{C_i}\right )=\{0\}$ ($i=1,2$). We show that $A_z^{C_i}$ ($i=1,2$) is essentially tracially in the class of separable ${\mathscr Z}$-stable $C^*$-algebras of nuclear dimension $1$. $A_z^{C_i}$ has stable rank one, strict comparison for positive elements and no $2$-quasitrace other than the unique tracial state. We also produce models of unital separable simple nonexact (exact but not nuclear) $C^*$-algebras which are essentially tracially in the class of simple separable nuclear ${\mathscr Z}$-stable $C^*$-algebras, and the models exhaust all possible weakly unperforated Elliott invariants. We also discuss some basic properties of essential tracial approximation.
We consider two inclusions of $C^{*}$-algebras whose small $C^{*}$-algebras have approximate units of the large $C^{*}$-algebras and their two spaces of all bounded bimodule linear maps. We suppose that the two inclusions of $C^{*}$-algebras are strongly Morita equivalent. In this paper, we shall show that there exists an isometric isomorphism from one of the spaces of all bounded bimodule linear maps to the other space and we shall study the basic properties about the isometric isomorphism. And, using this isometric isomorphism, we define the Picard group for a bimodule linear map and discuss the Picard group for a bimodule linear map.
We demonstrate how exact structures can be placed on the additive category of right operator modules over an operator algebra in order to discuss global dimension for operator algebras. The properties of the Haagerup tensor product play a decisive role in this.
In this paper, let A be an infinite-dimensional stably finite unital simple separable $\mathrm {C^*}$-algebra. Let $B\subset A$ be a centrally large subalgebra in A such that B has uniform property $\Gamma $. Then we prove that A has uniform property $\Gamma $. Let $\Omega $ be a class of stably finite unital $\mathrm {C^*}$-algebras such that for any $B\in \Omega $, B has uniform property $\Gamma $. Then we show that A has uniform property $\Gamma $ for any simple unital $\mathrm {C^*}$-algebra $A\in \rm {TA}\Omega $.
We show that if G is an amenable group and H is a hyperbolic group, then the free product $G\ast H$ is weakly amenable. A key ingredient in the proof is the fact that $G\ast H$ is orbit equivalent to $\mathbb{Z}\ast H$.
We consider symmetry-protected topological phases with on-site finite group G symmetry $\beta $ for two-dimensional quantum spin systems. We show that they have $H^{3}(G,{\mathbb T})$-valued invariant.
We prove that a finite index regular inclusion of $II_1$-factors with commutative first relative commutant is always a crossed product subfactor with respect to a minimal action of a biconnected weak Kac algebra. Prior to this, we prove that every finite index inclusion of $II_1$-factors which is of depth 2 and has simple first relative commutant (respectively, is regular and has commutative or simple first relative commutant) admits a two-sided Pimsner–Popa basis (respectively, a unitary orthonormal basis).
We investigate the notion of relatively amenable topological action and show that the action of Thompson’s group T on $S^1$ is relatively amenable with respect to Thompson’s group F. We use this to conclude that F is exact if and only if T is exact. Moreover, we prove that the groupoid of germs of the action of T on $S^1$ is Borel amenable.
We consider groupoids constructed from a finite number of commuting local homeomorphisms acting on a compact metric space and study generalized Ruelle operators and $ C^{\ast } $-algebras associated to these groupoids. We provide a new characterization of $ 1 $-cocycles on these groupoids taking values in a locally compact abelian group, given in terms of $ k $-tuples of continuous functions on the unit space satisfying certain canonical identities. Using this, we develop an extended Ruelle–Perron–Frobenius theory for dynamical systems of several commuting operators ($ k $-Ruelle triples and commuting Ruelle operators). Results on KMS states on $ C^{\ast } $-algebras constructed from these groupoids are derived. When the groupoids being studied come from higher-rank graphs, our results recover existence and uniqueness results for KMS states associated to the graphs.
We study the structure and compute the stable rank of $C^{*}$-algebras of finite higher-rank graphs. We completely determine the stable rank of the $C^{*}$-algebra when the $k$-graph either contains no cycle with an entrance or is cofinal. We also determine exactly which finite, locally convex $k$-graphs yield unital stably finite $C^{*}$-algebras. We give several examples to illustrate our results.
We study the invariance of KMS states on graph $C^{\ast }$-algebras coming from strongly connected and circulant graphs under the classical and quantum symmetry of the graphs. We show that the unique KMS state for strongly connected graphs is invariant under the quantum automorphism group of the graph. For circulant graphs, it is shown that the action of classical and quantum automorphism groups preserves only one of the KMS states occurring at the critical inverse temperature. We also give an example of a graph $C^{\ast }$-algebra having more than one KMS state such that all of them are invariant under the action of classical automorphism group of the graph, but there is a unique KMS state which is invariant under the action of quantum automorphism group of the graph.
Wick polynomials and Wick products are studied in the context of noncommutative probability theory. It is shown that free, Boolean, and conditionally free Wick polynomials can be defined and related through the action of the group of characters over a particular Hopf algebra. These results generalize our previous developments of a Hopf-algebraic approach to cumulants and Wick products in classical probability theory.
Let $\mathcal {M}$ be a semifinite von Nemann algebra equipped with an increasing filtration $(\mathcal {M}_n)_{n\geq 1}$ of (semifinite) von Neumann subalgebras of $\mathcal {M}$. For $0<p <\infty $, let $\mathsf {h}_p^c(\mathcal {M})$ denote the noncommutative column conditioned martingale Hardy space and $\mathsf {bmo}^c(\mathcal {M})$ denote the column “little” martingale BMO space associated with the filtration $(\mathcal {M}_n)_{n\geq 1}$.
We prove the following real interpolation identity: if $0<p <\infty $ and $0<\theta <1$, then for $1/r=(1-\theta )/p$,
These extend previously known results from $p\geq 1$ to the full range $0<p<\infty $. Other related spaces such as spaces of adapted sequences and Junge’s noncommutative conditioned $L_p$-spaces are also shown to form interpolation scale for the full range $0<p<\infty $ when either the real method or the complex method is used. Our method of proof is based on a new algebraic atomic decomposition for Orlicz space version of Junge’s noncommutative conditioned $L_p$-spaces.
We apply these results to derive various inequalities for martingales in noncommutative symmetric quasi-Banach spaces.
We obtain a characterization of the unital C*-algebras with the property that every element is a limit of products of positive elements, thereby answering a question of Murphy and Phillips.
In this paper, we characterize surjective isometries on certain classes of noncommutative spaces associated with semi-finite von Neumann algebras: the Lorentz spaces $L^{w,1}$, as well as the spaces $L^1+L^\infty$ and $L^1\cap L^\infty$. The technique used in all three cases relies on characterizations of the extreme points of the unit balls of these spaces. Of particular interest is that the representations of isometries obtained in this paper are global representations.
We expand upon work from many hands on the decomposition of nuclear maps. Such maps can be characterised by their ability to be approximately written as the composition of maps to and from matrices. Under certain conditions (such as quasidiagonality), we can find a decomposition whose maps behave nicely, by preserving multiplication up to an arbitrary degree of accuracy and being constructed from order-zero maps (as in the definition of nuclear dimension). We investigate these conditions and relate them to a W*-analogue.
We introduce ‘generalised higher-rank k-graphs’ as a class of categories equipped with a notion of size. They extend not only higher-rank k-graphs, but also the Levi categories introduced by the first author as a categorical setting for graphs of groups. We prove that examples of generalised higher-rank k-graphs can be constructed using Zappa–Szép products of groupoids and higher-rank graphs.
Motivated by the recent result in Samei and Wiersma (2020, Advances in Mathematics 359, 106897) that quasi-Hermitian groups are amenable, we consider a generalization of this property on discrete groups associated to certain Roe-type algebras; we call it uniformly quasi-Hermitian. We show that the class of uniformly quasi-Hermitian groups is contained in the class of supramenable groups and includes all subexponential groups. We also show that they are invariant under quasi-isometry.