To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We provide an abstract characterization for the Cuntz semigroup of unital commutative AI-algebras, as well as a characterization for abstract Cuntz semigroups of the form $\operatorname {\mathrm {Lsc}} (X,\overline {\mathbb {N}})$ for some $T_1$-space X. In our investigations, we also uncover new properties that the Cuntz semigroup of all AI-algebras satisfies.
In this paper, we prove a noncommutative (nc) analog of Schwarz lemma for the nc Schur–Agler class and prove that the regular nc Schur–Agler class and the regular free Herglotz–Agler class are homeomorphic. Moreover, we give a characterization of regular free Herglotz–Agler functions. As an application, we will show that any regular free Herglotz–Agler functions can uniformly be approximated by regular Herglotz–Agler free polynomials.
For a given inverse semigroup action on a topological space, one can associate an étale groupoid. We prove that there exists a correspondence between the certain subsemigroups and the open wide subgroupoids in case that the action is strongly tight. Combining with the recent result of Brown et al., we obtain a correspondence between the certain subsemigroups of an inverse semigroup and the Cartan intermediate subalgebras of a groupoid C*-algebra.
We use tools from free probability to study the spectra of Hermitian operators on infinite graphs. Special attention is devoted to universal covering trees of finite graphs. For operators on these graphs, we derive a new variational formula for the spectral radius and provide new proofs of results due to Sunada and Aomoto using free probability.
With the goal of extending the applicability of free probability techniques beyond universal covering trees, we introduce a new combinatorial product operation on graphs and show that, in the noncommutative probability context, it corresponds to the notion of freeness with amalgamation. We show that Cayley graphs of amalgamated free products of groups, as well as universal covering trees, can be constructed using our graph product.
In this paper, we construct uncountably many examples of multiparameter CCR flows, which are not pullbacks of $1$-parameter CCR flows, with any given index. Moreover, the constructed CCR flows are type I in the sense that the associated product system is the smallest subsystem containing its units.
We resolve the isomorphism problem for tensor algebras of unital multivariable dynamical systems. Specifically, we show that unitary equivalence after a conjugation for multivariable dynamical systems is a complete invariant for complete isometric isomorphisms between their tensor algebras. In particular, this settles a conjecture of Davidson and Kakariadis, Inter. Math. Res. Not.2014 (2014), 1289–1311 relating to work of Arveson, Acta Math.118 (1967), 95–109 from the 1960s, and extends related work of Kakariadis and Katsoulis, J. Noncommut. Geom.8 (2014), 771–787.
In Kiukas, Lahti, and Ylinen (2006, Journal of Mathematical Physics 47, 072104), the authors asked the following general question. When is a positive operator measure projection valued? A version of this question formulated in terms of operator moments was posed in Pietrzycki and Stochel (2021, Journal of Functional Analysis 280, 109001). Let T be a self-adjoint operator, and let F be a Borel semispectral measure on the real line with compact support. For which positive integers$p< q$do the equalities$T^k =\int _{\mathbb {R}} x^k F(\mathrm {d\hspace {.1ex}} x)$, $k=p, q$, imply that F is a spectral measure? In the present paper, we completely solve the second problem. The answer is affirmative if $p$ is odd and $q$ is even, and negative otherwise. The case $(p,q)=(1,2)$ closely related to intrinsic noise operator was solved by several authors including Kruszyński and de Muynck, as well as Kiukas, Lahti, and Ylinen. The counterpart of the second problem concerning the multiplicativity of unital positive linear maps on $C^*$-algebras is also provided.
We investigate dynamical systems consisting of a locally compact Hausdorff space equipped with a partially defined local homeomorphism. Important examples of such systems include self-covering maps, one-sided shifts of finite type and, more generally, the boundary-path spaces of directed and topological graphs. We characterize the topological conjugacy of these systems in terms of isomorphisms of their associated groupoids and C*-algebras. This significantly generalizes recent work of Matsumoto and of the second- and third-named authors.
We introduce Poisson boundaries of II$_1$ factors with respect to density operators that give the traces. The Poisson boundary is a von Neumann algebra that contains the II$_1$ factor and is a particular example of the boundary of a unital completely positive map as introduced by Izumi. Studying the inclusion of the II$_1$ factor into its boundary, we develop a number of notions, such as double ergodicity and entropy, that can be seen as natural analogues of results regarding the Poisson boundaries introduced by Furstenberg. We use the techniques developed to answer a problem of Popa by showing that all finite factors satisfy his MV property. We also extend a result of Nevo by showing that property (T) factors give rise to an entropy gap.
We characterize the noncommutative Aleksandrov–Clark measures and the minimal realization formulas of contractive and, in particular, isometric noncommutative rational multipliers of the Fock space. Here, the full Fock space over $\mathbb {C} ^d$ is defined as the Hilbert space of square-summable power series in several noncommuting (NC) formal variables, and we interpret this space as the noncommutative and multivariable analogue of the Hardy space of square-summable Taylor series in the complex unit disk. We further obtain analogues of several classical results in Aleksandrov–Clark measure theory for noncommutative and contractive rational multipliers.
Noncommutative measures are defined as positive linear functionals on a certain self-adjoint subspace of the Cuntz–Toeplitz algebra, the unital $C^*$-algebra generated by the left creation operators on the full Fock space. Our results demonstrate that there is a fundamental relationship between NC Hardy space theory, representation theory of the Cuntz–Toeplitz and Cuntz algebras, and the emerging field of noncommutative rational functions.
For a state $\omega$ on a C$^{*}$-algebra $A$, we characterize all states $\rho$ in the weak* closure of the set of all states of the form $\omega \circ \varphi$, where $\varphi$ is a map on $A$ of the form $\varphi (x)=\sum \nolimits _{i=1}^{n}a_i^{*}xa_i,$$\sum \nolimits _{i=1}^{n}a_i^{*}a_i=1$ ($a_i\in A$, $n\in \mathbb {N}$). These are precisely the states $\rho$ that satisfy $\|\rho |J\|\leq \|\omega |J\|$ for each ideal $J$ of $A$. The corresponding question for normal states on a von Neumann algebra $\mathcal {R}$ (with the weak* closure replaced by the norm closure) is also considered. All normal states of the form $\omega \circ \psi$, where $\psi$ is a quantum channel on $\mathcal {R}$ (that is, a map of the form $\psi (x)=\sum \nolimits _ja_j^{*}xa_j$, where $a_j\in \mathcal {R}$ are such that the sum $\sum \nolimits _ja_j^{*}a_j$ converge to $1$ in the weak operator topology) are characterized. A variant of this topic for hermitian functionals instead of states is investigated. Maximally mixed states are shown to vanish on the strong radical of a C$^{*}$-algebra and for properly infinite von Neumann algebras the converse also holds.
We compute the generator rank of a subhomogeneous $C^*\!$-algebra in terms of the covering dimension of the pieces of its primitive ideal space corresponding to irreducible representations of a fixed dimension. We deduce that every $\mathcal {Z}$-stable approximately subhomogeneous algebra has generator rank one, which means that a generic element in such an algebra is a generator.
This leads to a strong solution of the generator problem for classifiable, simple, nuclear $C^*\!$-algebras: a generic element in each such algebra is a generator. Examples of Villadsen show that this is not the case for all separable, simple, nuclear $C^*\!$-algebras.
We prove that many, but not all, injective factors arise as crossed products by nonsingular Bernoulli actions of the group $\mathbb {Z}$. We obtain this result by proving a completely general result on the ergodicity, type and Krieger’s associated flow for Bernoulli shifts with arbitrary base spaces. We prove that the associated flow must satisfy a structural property of infinite divisibility. Conversely, we prove that all almost periodic flows, as well as many other ergodic flows, do arise as associated flow of a weakly mixing Bernoulli action of any infinite amenable group. As a byproduct, we prove that all injective factors with almost periodic flow of weights are infinite tensor products of $2 \times 2$ matrices. Finally, we construct Poisson suspension actions with prescribed associated flow for any locally compact second countable group that does not have property (T).
We establish a theory of noncommutative (NC) functions on a class of von Neumann algebras with a particular direct sum property, e.g., $B({\mathcal H})$. In contrast to the theory’s origins, we do not rely on appealing to results from the matricial case. We prove that the $k{\mathrm {th}}$ directional derivative of any NC function at a scalar point is a k-linear homogeneous polynomial in its directions. Consequences include the fact that NC functions defined on domains containing scalar points can be uniformly approximated by free polynomials as well as realization formulas for NC functions bounded on particular sets, e.g., the NC polydisk and NC row ball.
We show that the properties of being rationally K-stable passes from the fibres of a continuous $C(X)$-algebra to the ambient algebra, under the assumption that the underlying space X is compact, metrizable, and of finite covering dimension. As an application, we show that a crossed product C*-algebra is (rationally) K-stable provided the underlying C*-algebra is (rationally) K-stable, and the action has finite Rokhlin dimension with commuting towers.
A $C^{*}$-algebra A is said to detect nuclearity if, whenever a $C^{*}$-algebra B satisfies $A\otimes _{\mathrm{min}} B = A\otimes _{\mathrm{max}} B,$ it follows that B is nuclear. In this note, we survey the main results associated with this topic and present the background and tools necessary for proving the main results. In particular, we show that the $C^{*}$-algebra $A = C^{*}(\mathbb {F}_{\infty })\otimes _{\mathrm{min}} B(\ell ^{2})/K(\ell ^{2})$ detects nuclearity. This result is known to experts, but has never appeared in the literature.
Scarparo has constructed counterexamples to Matui’s HK-conjecture. These counterexamples and other known counterexamples are essentially principal but not principal. In the present paper, a counterexample to the HK-conjecture that is principal is given. Like Scarparo’s original counterexample, our counterexample is the transformation groupoid associated to a particular odometer. However, the relevant group is the fundamental group of a flat manifold (and hence is torsion-free) and the associated odometer action is free. The examples discussed here do satisfy the rational version of the HK-conjecture.
We initiate the study of C*-algebras and groupoids arising from left regular representations of Garside categories, a notion which originated from the study of Braid groups. Every higher rank graph is a Garside category in a natural way. We develop a general classification result for closed invariant subspaces of our groupoids as well as criteria for topological freeness and local contractiveness, properties which are relevant for the structure of the corresponding C*-algebras. Our results provide a conceptual explanation for previous results on gauge-invariant ideals of higher rank graph C*-algebras. As another application, we give a complete analysis of the ideal structures of C*-algebras generated by left regular representations of Artin–Tits monoids.
We examine a semigroup analogue of the Kumjian–Renault representation of C*-algebras with Cartan subalgebras on twisted groupoids. Specifically, we represent semigroups with distinguished normal subsemigroups as ‘slice-sections’ of groupoid bundles.
In 2016, I solved a problem of de la Harpe from 2006: Is there a nondiscrete C$^{\ast }$-simple group? However the solution was not fully satisfactory, as the C$^{\ast }$-simple groups provided (and their operator algebras) are very close to discrete groups. All previously known examples are of this form. In this article I give yet another construction of nondiscrete C$^{\ast }$-simple groups. The statement in the title then follows. This in particular gives the first examples of nonelementary C$^{\ast }$-simple groups (in Wesolek’s sense).