We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $G_\Gamma \curvearrowright X$ and $G_\Lambda \curvearrowright Y$ be two free measure-preserving actions of one-ended right-angled Artin groups with trivial center on standard probability spaces. Assume they are irreducible, i.e. every element from a standard generating set acts ergodically. We prove that if the two actions are stably orbit equivalent (or merely stably $W^*$-equivalent), then they are automatically conjugate through a group isomorphism between $G_\Gamma$ and $G_\Lambda$. Through work of Monod and Shalom, we derive a superrigidity statement: if the action $G_\Gamma \curvearrowright X$ is stably orbit equivalent (or merely stably $W^*$-equivalent) to a free, measure-preserving, mildly mixing action of a countable group, then the two actions are virtually conjugate. We also use the works of Popa and Ioana, Popa and Vaes to establish the $W^*$-superrigidity of Bernoulli actions of all infinite conjugacy classes groups having a finite generating set made of infinite-order elements where two consecutive elements commute, and one has a nonamenable centralizer: these include one-ended nonabelian right-angled Artin groups, but also many other Artin groups and most mapping class groups of finite-type surfaces.
Let P be a closed convex cone in $\mathbb{R}^d$ which is assumed to be spanning $\mathbb{R}^d$ and contains no line. In this article, we consider a family of CAR flows over P and study the decomposability of the associated product systems. We establish a necessary and sufficient condition for CAR flow to be decomposable. As a consequence, we show that there are uncountable many CAR flows which are cocycle conjugate to the corresponding CCR flows.
We investigate quantum lens spaces, $C(L_q^{2n+1}(r;\underline {m}))$, introduced by Brzeziński and Szymański as graph $C^*$-algebras. We give a new description of $C(L_q^{2n+1}(r;\underline {m}))$ as graph $C^*$-algebras amending an error in the original paper by Brzeziński and Szymański. Furthermore, for $n\leq 3$, we give a number-theoretic invariant, when all but one weight are coprime to the order of the acting group r. This builds upon the work of Eilers, Restorff, Ruiz, and Sørensen.
We prove the first orbit equivalence superrigidity results for actions of type III$_\unicode{x3bb} $ when $\unicode{x3bb} \neq 1$. These actions arise as skew products of actions of dense subgroups of $\operatorname {SL}(n,\mathbb {R})$ on the sphere $S^{n-1}$ and they can have any prescribed associated flow.
For every minimal one-sided shift space X over a finite alphabet, left special elements are those points in X having at least two preimages under the shift operation. In this paper, we show that the Cuntz–Pimsner $C^*$-algebra $\mathcal {O}_X$ has nuclear dimension $1$ when X is minimal and the number of left special elements in X is finite. This is done by describing concretely the cover of X, which also recovers an exact sequence, discovered before by Carlsen and Eilers.
It is shown that the colored isomorphism class of a unital, simple, $\mathcal {Z}$-stable, separable amenable C$^*$-algebra satisfying the universal coefficient theorem is determined by its tracial simplex.
We apply a method inspired by Popa's intertwining-by-bimodules technique to investigate inner conjugacy of MASAs in graph $C^*$-algebras. First, we give a new proof of non-inner conjugacy of the diagonal MASA ${\mathcal {D}}_E$ to its non-trivial image under a quasi-free automorphism, where $E$ is a finite transitive graph. Changing graphs representing the algebras, this result applies to some non quasi-free automorphisms as well. Then, we exhibit a large class of MASAs in the Cuntz algebra ${\mathcal {O}}_n$ that are not inner conjugate to the diagonal ${\mathcal {D}}_n$.
We prove a double commutant theorem for separable subalgebras of a wide class of corona C*-algebras, largely resolving a problem posed by Pedersen in 1988. Double commutant theorems originated with von Neumann, whose seminal result evolved into an entire field now called von Neumann algebra theory. Voiculescu later proved a C*-algebraic double commutant theorem for subalgebras of the Calkin algebra. We prove a similar result for subalgebras of a much more general class of so-called corona C*-algebras.
For amenable discrete groupoids $\mathcal {G}$ and row-finite directed graphs E, let $(\mathcal {G},E)$ be a self-similar groupoid and let $C^*(\mathcal {G}, E)$ be the associated $C^*$-algebra. We introduce a weaker faithfulness condition than those in the existing literature that still guarantees that $C^*(\mathcal {G})$ embeds in $C^*(\mathcal {G}, E)$. Under this faithfulness condition, we prove a gauge-invariant uniqueness theorem.
Given an irreducible lattice $\Gamma $ in the product of higher rank simple Lie groups, we prove a co-finiteness result for the $\Gamma $-invariant von Neumann subalgebras of the group von Neumann algebra $\mathcal {L}(\Gamma )$, and for the $\Gamma $-invariant unital $C^*$-subalgebras of the reduced group $C^*$-algebra $C^*_{\mathrm {red}}(\Gamma )$. We use these results to show that: (i) every $\Gamma $-invariant von Neumann subalgebra of $\mathcal {L}(\Gamma )$ is generated by a normal subgroup; and (ii) given a weakly mixing unitary representation $\pi $ of $\Gamma $, every $\Gamma $-equivariant conditional expectation on $C^*_\pi (\Gamma )$ is the canonical conditional expectation onto the $C^*$-subalgebra generated by a normal subgroup.
Let G be a locally compact unimodular group, and let $\phi $ be some function of n variables on G. To such a $\phi $, one can associate a multilinear Fourier multiplier, which acts on some n-fold product of the noncommutative $L_p$-spaces of the group von Neumann algebra. One may also define an associated Schur multiplier, which acts on an n-fold product of Schatten classes $S_p(L_2(G))$. We generalize well-known transference results from the linear case to the multilinear case. In particular, we show that the so-called “multiplicatively bounded $(p_1,\ldots ,p_n)$-norm” of a multilinear Schur multiplier is bounded above by the corresponding multiplicatively bounded norm of the Fourier multiplier, with equality whenever the group is amenable. Furthermore, we prove that the bilinear Hilbert transform is not bounded as a vector-valued map $L_{p_1}(\mathbb {R}, S_{p_1}) \times L_{p_2}(\mathbb {R}, S_{p_2}) \rightarrow L_{1}(\mathbb {R}, S_{1})$, whenever $p_1$ and $p_2$ are such that $\frac {1}{p_1} + \frac {1}{p_2} = 1$. A similar result holds for certain Calderón–Zygmund-type operators. This is in contrast to the nonvector-valued Euclidean case.
We present here a multiplicative version of the classical Kowalski–Słodkowski theorem, which identifies the characters among the collection of all functionals on a complex and unital Banach algebra A. In particular, we show that, if A is a $C^\star $-algebra, and if $\phi :A\to \mathbb C $ is a continuous function satisfying $ \phi (x)\phi (y) \in \sigma (xy) $ for all $x,y\in A$ (where $\sigma $ denotes the spectrum), then either $\phi $ is a character of A or $-\phi $ is a character of A.
We provide an abstract characterization for the Cuntz semigroup of unital commutative AI-algebras, as well as a characterization for abstract Cuntz semigroups of the form $\operatorname {\mathrm {Lsc}} (X,\overline {\mathbb {N}})$ for some $T_1$-space X. In our investigations, we also uncover new properties that the Cuntz semigroup of all AI-algebras satisfies.
In this paper, we prove a noncommutative (nc) analog of Schwarz lemma for the nc Schur–Agler class and prove that the regular nc Schur–Agler class and the regular free Herglotz–Agler class are homeomorphic. Moreover, we give a characterization of regular free Herglotz–Agler functions. As an application, we will show that any regular free Herglotz–Agler functions can uniformly be approximated by regular Herglotz–Agler free polynomials.
For a given inverse semigroup action on a topological space, one can associate an étale groupoid. We prove that there exists a correspondence between the certain subsemigroups and the open wide subgroupoids in case that the action is strongly tight. Combining with the recent result of Brown et al., we obtain a correspondence between the certain subsemigroups of an inverse semigroup and the Cartan intermediate subalgebras of a groupoid C*-algebra.
We use tools from free probability to study the spectra of Hermitian operators on infinite graphs. Special attention is devoted to universal covering trees of finite graphs. For operators on these graphs, we derive a new variational formula for the spectral radius and provide new proofs of results due to Sunada and Aomoto using free probability.
With the goal of extending the applicability of free probability techniques beyond universal covering trees, we introduce a new combinatorial product operation on graphs and show that, in the noncommutative probability context, it corresponds to the notion of freeness with amalgamation. We show that Cayley graphs of amalgamated free products of groups, as well as universal covering trees, can be constructed using our graph product.
In this paper, we construct uncountably many examples of multiparameter CCR flows, which are not pullbacks of $1$-parameter CCR flows, with any given index. Moreover, the constructed CCR flows are type I in the sense that the associated product system is the smallest subsystem containing its units.
We resolve the isomorphism problem for tensor algebras of unital multivariable dynamical systems. Specifically, we show that unitary equivalence after a conjugation for multivariable dynamical systems is a complete invariant for complete isometric isomorphisms between their tensor algebras. In particular, this settles a conjecture of Davidson and Kakariadis, Inter. Math. Res. Not.2014 (2014), 1289–1311 relating to work of Arveson, Acta Math.118 (1967), 95–109 from the 1960s, and extends related work of Kakariadis and Katsoulis, J. Noncommut. Geom.8 (2014), 771–787.
In Kiukas, Lahti, and Ylinen (2006, Journal of Mathematical Physics 47, 072104), the authors asked the following general question. When is a positive operator measure projection valued? A version of this question formulated in terms of operator moments was posed in Pietrzycki and Stochel (2021, Journal of Functional Analysis 280, 109001). Let T be a self-adjoint operator, and let F be a Borel semispectral measure on the real line with compact support. For which positive integers$p< q$do the equalities$T^k =\int _{\mathbb {R}} x^k F(\mathrm {d\hspace {.1ex}} x)$, $k=p, q$, imply that F is a spectral measure? In the present paper, we completely solve the second problem. The answer is affirmative if $p$ is odd and $q$ is even, and negative otherwise. The case $(p,q)=(1,2)$ closely related to intrinsic noise operator was solved by several authors including Kruszyński and de Muynck, as well as Kiukas, Lahti, and Ylinen. The counterpart of the second problem concerning the multiplicativity of unital positive linear maps on $C^*$-algebras is also provided.
We investigate dynamical systems consisting of a locally compact Hausdorff space equipped with a partially defined local homeomorphism. Important examples of such systems include self-covering maps, one-sided shifts of finite type and, more generally, the boundary-path spaces of directed and topological graphs. We characterize the topological conjugacy of these systems in terms of isomorphisms of their associated groupoids and C*-algebras. This significantly generalizes recent work of Matsumoto and of the second- and third-named authors.