We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study hermitian operators and isometries on spaces of vector-valued Lipschitz maps with the sum norm. There are two main theorems in this paper. Firstly, we prove that every hermitian operator on $\operatorname {Lip}(X,E)$, where E is a complex Banach space, is a generalized composition operator. Secondly, we give a complete description of unital surjective complex linear isometries on $\operatorname {Lip}(X,\mathcal {A})$, where $\mathcal {A}$ is a unital factor $C^{*}$-algebra. These results improve previous results stated by the author.
We show that the Hilbert bimodule associated with a compact topological graph can be recovered from the $C^*$-algebraic triple consisting of the Toeplitz algebra of the graph, its gauge action and the commutative subalgebra of functions on the vertex space of the graph. We discuss connections with work of Davidson–Katsoulis and of Davidson–Roydor on local conjugacy of topological graphs and isomorphism of their tensor algebras. In particular, we give a direct proof that a compact topological graph can be recovered up to local conjugacy from its Hilbert bimodule, and present an example of nonisomorphic locally conjugate compact topological graphs with isomorphic Hilbert bimodules. We also give an elementary proof that for compact topological graphs with totally disconnected vertex space the notions of local conjugacy, Hilbert bimodule isomorphism, isomorphism of $C^*$-algebraic triples, and isomorphism all coincide.
We revisit tensor algebras of subproduct systems with Hilbert space fibers, resolving some open questions in the case of infinite-dimensional fibers. We characterize when a tensor algebra can be identified as the algebra of uniformly continuous noncommutative functions on a noncommutative homogeneous variety or, equivalently, when it is residually finite-dimensional: this happens precisely when the closed homogeneous ideal associated with the subproduct system satisfies a Nullstellensatz with respect to the algebra of uniformly continuous noncommutative functions on the noncommutative closed unit ball. We show that – in contrast to the finite-dimensional case – in the case of infinite-dimensional fibers, this Nullstellensatz may fail. Finally, we also resolve the isomorphism problem for tensor algebras of subproduct systems: two such tensor algebras are (isometrically) isomorphic if and only if their subproduct systems are isomorphic in an appropriate sense.
In this article, the question of whether the Löwner partial order on the positive cone of an operator algebra is determined by the norm of any arbitrary Kubo–Ando mean is studied. The question was affirmatively answered for certain classes of Kubo–Ando means, yet the general case was left as an open problem. We here give a complete answer to this question, by showing that the norm of every symmetric Kubo–Ando mean is order-determining, i.e., if $A,B\in \mathcal B(H)^{++}$ satisfy $\Vert A\sigma X\Vert \le \Vert B\sigma X\Vert $ for every $X\in \mathcal {A}^{{++}}$, where $\mathcal A$ is the C*-subalgebra generated by $B-A$ and I, then $A\le B$.
We investigate almost minimal actions of abelian groups and their crossed products. As an application, given multiplicatively independent integers p and q, we show that Furstenberg’s $\times p,\times q$ conjecture holds if and only if the canonical trace is the only faithful extreme tracial state on the $C^*$-algebra of the group $\mathbb {Z}[\frac {1}{pq}]\rtimes \mathbb {Z}^2$. We also compute the primitive ideal space and K-theory of $C^*(\mathbb {Z}[\frac {1}{pq}]\rtimes \mathbb {Z}^2)$.
We single out a large class of groups ${\rm {\boldsymbol {\mathscr {M}}}}$ for which the following unique prime factorization result holds: if $\Gamma _1,\ldots,\Gamma _n\in {\rm {\boldsymbol {\mathscr {M}}}}$ and $\Gamma _1\times \cdots \times \Gamma _n$ is measure equivalent to a product $\Lambda _1\times \cdots \times \Lambda _m$ of infinite icc groups, then $n \ge m$, and if $n = m$, then, after permutation of the indices, $\Gamma _i$ is measure equivalent to $\Lambda _i$, for all $1\leq i\leq n$. This provides an analogue of Monod and Shalom's theorem [Orbit equivalence rigidity and bounded cohomology, Ann. of Math. 164 (2006), 825–878] for groups that belong to ${\rm {\boldsymbol {\mathscr {M}}}}$. Class ${\rm {\boldsymbol {\mathscr {M}}}}$ is constructed using groups whose von Neumann algebras admit an s-malleable deformation in the sense of Sorin Popa and it contains all icc non-amenable groups $\Gamma$ for which either (i) $\Gamma$ is an arbitrary wreath product group with amenable base or (ii) $\Gamma$ admits an unbounded 1-cocycle into its left regular representation. Consequently, we derive several orbit equivalence rigidity results for actions of product groups that belong to ${\rm {\boldsymbol {\mathscr {M}}}}$. Finally, for groups $\Gamma$ satisfying condition (ii), we show that all embeddings of group von Neumann algebras of non-amenable inner amenable groups into $L(\Gamma )$ are ‘rigid’. In particular, we provide an alternative solution to a question of Popa that was recently answered by Ding, Kunnawalkam Elayavalli, and Peterson [Properly Proximal von Neumann Algebras, Preprint (2022), arXiv:2204.00517].
We show that all values in the interval $[0,{\pi }/{2}]$ can be attained as interior angles between intermediate subalgebras (as introduced by Bakshi and the first named author [‘Lattice of intermediate subalgebras’, J. Lond. Math. Soc. (2)104(2) (2021), 2082–2127]) of a certain inclusion of simple unital $C^*$-algebras. We also calculate the interior angles between intermediate crossed product subalgebras of any inclusion of crossed product algebras corresponding to any action of a countable discrete group and its subgroups on a unital $C^*$-algebra.
Orthomodular logic is a weakening of quantum logic in the sense of Birkhoff and von Neumann. Orthomodular logic is shown to be a nonlinear noncommutative logic. Sequents are given a physically motivated semantics that is consistent with exactly one semantics for propositional formulas that use negation, conjunction, and implication. In particular, implication must be interpreted as the Sasaki arrow, which satisfies the deduction theorem in this logic. As an application, this deductive system is extended to two systems of predicate logic: the first is sound for Takeuti’s quantum set theory, and the second is sound for a variant of Weaver’s quantum logic.
The existence of isometric embedding of $S_q^m$ into $S_p^n$, where $1\leq p\neq q\leq \infty$ and $m,n\geq 2$, has been recently studied in [6]. In this article, we extend the study of isometric embeddability beyond the above-mentioned range of $p$ and $q$. More precisely, we show that there is no isometric embedding of the commutative quasi-Banach space $\ell _q^m(\mathbb {R})$ into $\ell _p^n(\mathbb {R})$, where $(q,p)\in (0,\infty )\times (0,1)$ and $p\neq q$. As non-commutative quasi-Banach spaces, we show that there is no isometric embedding of $S_q^m$ into $S_p^n$, where $(q,p)\in (0,2)\setminus \{1\}\times (0,1)$$\cup \, \{1\}\times (0,1)\setminus \left \{\!\frac {1}{n}:n\in \mathbb {N}\right \}$$\cup \, \{\infty \}\times (0,1)\setminus \left \{\!\frac {1}{n}:n\in \mathbb {N}\right \}$ and $p\neq q$. Moreover, in some restrictive cases, we also show that there is no isometric embedding of $S_q^m$ into $S_p^n$, where $(q,p)\in [2, \infty )\times (0,1)$. A new tool in our paper is the non-commutative Clarkson's inequality for Schatten class operators. Other tools involved are the Kato–Rellich theorem and multiple operator integrals in perturbation theory, followed by intricate computations involving power-series analysis.
Consider a minimal-free topological dynamical system $(X, \mathbb Z^d)$. It is shown that the radius of comparison of the crossed product C*-algebra $\mathrm {C}(X) \rtimes \mathbb Z^d$ is at most half the mean topological dimension of $(X, \mathbb Z^d)$. As a consequence, the C*-algebra $\mathrm {C}(X) \rtimes \mathbb Z^d$ is classified by the Elliott invariant if the mean dimension of $(X, \mathbb Z^d)$ is zero.
In this paper, a notion of non-microstate bi-free entropy with respect to completely positive maps is constructed thereby extending the notions of non-microstate bi-free entropy and free entropy with respect to a completely positive map. By extending the operator-valued bi-free structures to allow for more analytical arguments, a notion of conjugate variables is constructed using both moment and cumulant expressions. The notions of free Fisher information and entropy are then extended to this setting and used to show minima of the Fisher information and maxima of the non-microstate bi-free entropy at bi-R-diagonal elements.
Answering a question by Chatterji–Druţu–Haglund, we prove that, for every locally compact group $G$, there exists a critical constant $p_G \in [0,\infty ]$ such that $G$ admits a continuous affine isometric action on an $L_p$ space ($0< p<\infty$) with unbounded orbits if and only if $p \geq p_G$. A similar result holds for the existence of proper continuous affine isometric actions on $L_p$ spaces. Using a representation of cohomology by harmonic cocycles, we also show that such unbounded orbits cannot occur when the linear part comes from a measure-preserving action, or more generally a state-preserving action on a von Neumann algebra and $p>2$. We also prove the stability of this critical constant $p_G$ under $L_p$ measure equivalence, answering a question of Fisher.
The action on the trace space induced by a generic automorphism of a suitable finite classifiable
${\mathrm {C}^*}$
-algebra is shown to be chaotic and weakly mixing. Model
${\mathrm {C}^*}$
-algebras are constructed to observe the central limit theorem and other statistical features of strongly chaotic tracial actions. Genericity of finite Rokhlin dimension is used to describe
$KK$
-contractible stably projectionless
${\mathrm {C}^*}$
-algebras as crossed products.
We initiate the study of computable presentations of real and complex C*-algebras under the program of effective metric structure theory. With the group situation as a model, we develop corresponding notions of recursive presentations and word problems for C*-algebras, and show some analogous results hold in this setting. Famously, every finitely generated group with a computable presentation is computably categorical, but we provide a counterexample in the case of C*-algebras. On the other hand, we show every finite-dimensional C*-algebra is computably categorical.
We construct two new classes of topological dynamical systems; one is a factor of a one-sided shift of finite type while the second is a factor of the two-sided shift. The data are a finite graph which presents the shift of finite type, a second finite directed graph and a pair of embeddings of it into the first, satisfying certain conditions. The factor is then obtained from a simple idea based on binary expansion of real numbers. In both cases, we construct natural metrics on the factors and, in the second case, this makes the system a Smale space, in the sense of Ruelle. We compute various algebraic invariants for these systems, including the homology for Smale space developed by the author and the K-theory of various $C^{*}$-algebras associated to them, in terms of the pair of original graphs.
What is the probability that a random UHF algebra is of infinite type? What is the probability that a random simple AI algebra has at most k extremal traces? What is the expected value of the radius of comparison of a random Villadsen-type AH algebra? What is the probability that such an algebra is $\mathcal{Z}$-stable? What is the probability that a random Cuntz–Krieger algebra is purely infinite and simple, and what can be said about the distribution of its K-theory? By constructing $\mathrm{C}^*$-algebras associated with suitable random (walks on) graphs, we provide context in which these are meaningful questions with computable answers.
Using probabilistic tools, we prove that any weak* continuous semigroup $(T_t)_{t \geqslant 0}$ of self-adjoint unital completely positive measurable Schur multipliers acting on the space $\mathrm {B}({\mathrm {L}}^2(X))$ of bounded operators on the Hilbert space ${\mathrm {L}}^2(X)$, where X is a suitable measure space, can be dilated by a weak* continuous group of Markov $*$-automorphisms on a bigger von Neumann algebra. We also construct a Markov dilation of these semigroups. Our results imply the boundedness of the McIntosh’s ${\mathrm {H}}^\infty $ functional calculus of the generators of these semigroups on the associated Schatten spaces and some interpolation results connected to ${\mathrm {BMO}}$-spaces. We also give an answer to a question of Steen, Todorov, and Turowska on completely positive continuous Schur multipliers.
We investigate the notion of tracial ${\mathcal {Z}}$-stability beyond unital $\mathrm {C}^*$-algebras, and we prove that this notion is equivalent to ${\mathcal {Z}}$-stability in the class of separable simple nuclear $\mathrm {C}^*$-algebras.
Let $C_c^{*}(\mathbb{N}^{2})$ be the universal $C^{*}$-algebra generated by a semigroup of isometries $\{v_{(m,n)}\,:\, m,n \in \mathbb{N}\}$ whose range projections commute. We analyse the structure of KMS states on $C_{c}^{*}(\mathbb{N}^2)$ for the time evolution determined by a homomorphism $c\,:\,\mathbb{Z}^{2} \to \mathbb{R}$. In contrast to the reduced version $C_{red}^{*}(\mathbb{N}^{2})$, we show that the set of KMS states on $C_{c}^{*}(\mathbb{N}^{2})$ has a rich structure. In particular, we exhibit uncountably many extremal KMS states of type I, II and III.