To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We apply the Evans–Kishimoto intertwining argument to the classification of actions of discrete amenable groups into the normalizer of a full group of an ergodic transformation. Our proof does not depend on the types of ergodic transformations.
Let A be a separable (not necessarily unital) simple $C^*$-algebra with strict comparison. We show that if A has tracial approximate oscillation zero, then A has stable rank one and the canonical map $\Gamma $ from the Cuntz semigroup of A to the corresponding lower-semicontinuous affine function space is surjective. The converse also holds. As a by-product, we find that a separable simple $C^*$-algebra which has almost stable rank one must have stable rank one, provided it has strict comparison and the canonical map $\Gamma $ is surjective.
In this article, we introduce and study the notion of Goldie dimension for C*-algebras. We prove that a C*-algebra A has Goldie dimension n if and only if the dimension of the center of its local multiplier algebra is n. In this case, A has finite-dimensional center and its primitive spectrum is extremally disconnected. If moreover, A is extending, we show that it decomposes into a direct sum of n prime C*-algebras. In particular, every stably finite, exact C*-algebra with Goldie dimension, that has the projection property and a strictly full element, admits a full projection and a non-zero densely defined lower semi-continuous trace. Finally we show that certain C*-algebras with Goldie dimension (not necessarily simple, separable or nuclear) are classifiable by the Elliott invariant.
We show that continuous group homomorphisms between unitary groups of unital C*-algebras induce maps between spaces of continuous real-valued affine functions on the trace simplices. Under certain $K$-theoretic regularity conditions, these maps can be seen to commute with the pairing between $K_0$ and traces. If the homomorphism is contractive and sends the unit circle to the unit circle, the map between spaces of continuous real-valued affine functions can further be shown to be unital and positive (up to a minus sign).
We prove that crossed products of fiberwise essentially minimal zero-dimensional dynamical systems, a class that includes systems in which all orbit closures are minimal, have isomorphic K-theory if and only if the dynamical systems are strong orbit equivalent. Under the additional assumption that the dynamical systems have no periodic points, this gives a classification theorem including isomorphism of the associated crossed product $C^*$-algebras as well. We additionally explore the K-theory of such crossed products and the Bratteli diagrams associated to the dynamical systems.
Let G be a compact quantum group. We show that given a G-equivariant $\textrm {C}^*$-correspondence E, the Pimsner algebra $\mathcal {O}_E$ can be naturally made into a G-$\textrm {C}^*$-algebra. We also provide sufficient conditions under which it is guaranteed that a G-action on the Pimsner algebra $\mathcal {O}_E$ arises in this way, in a suitable precise sense. When G is of Kac type, a KMS state on the Pimsner algebra, arising from a quasi-free dynamics, is G-equivariant if and only if the tracial state obtained from restricting it to the coefficient algebra is G-equivariant, under a natural condition. We apply these results to the situation when the $\textrm {C}^*$-correspondence is obtained from a finite, directed graph and draw various conclusions on the quantum automorphism groups of such graphs, both in the sense of Banica and Bichon.
We study hermitian operators and isometries on spaces of vector-valued Lipschitz maps with the sum norm. There are two main theorems in this paper. Firstly, we prove that every hermitian operator on $\operatorname {Lip}(X,E)$, where E is a complex Banach space, is a generalized composition operator. Secondly, we give a complete description of unital surjective complex linear isometries on $\operatorname {Lip}(X,\mathcal {A})$, where $\mathcal {A}$ is a unital factor $C^{*}$-algebra. These results improve previous results stated by the author.
We show that the Hilbert bimodule associated with a compact topological graph can be recovered from the $C^*$-algebraic triple consisting of the Toeplitz algebra of the graph, its gauge action and the commutative subalgebra of functions on the vertex space of the graph. We discuss connections with work of Davidson–Katsoulis and of Davidson–Roydor on local conjugacy of topological graphs and isomorphism of their tensor algebras. In particular, we give a direct proof that a compact topological graph can be recovered up to local conjugacy from its Hilbert bimodule, and present an example of nonisomorphic locally conjugate compact topological graphs with isomorphic Hilbert bimodules. We also give an elementary proof that for compact topological graphs with totally disconnected vertex space the notions of local conjugacy, Hilbert bimodule isomorphism, isomorphism of $C^*$-algebraic triples, and isomorphism all coincide.
We revisit tensor algebras of subproduct systems with Hilbert space fibers, resolving some open questions in the case of infinite-dimensional fibers. We characterize when a tensor algebra can be identified as the algebra of uniformly continuous noncommutative functions on a noncommutative homogeneous variety or, equivalently, when it is residually finite-dimensional: this happens precisely when the closed homogeneous ideal associated with the subproduct system satisfies a Nullstellensatz with respect to the algebra of uniformly continuous noncommutative functions on the noncommutative closed unit ball. We show that – in contrast to the finite-dimensional case – in the case of infinite-dimensional fibers, this Nullstellensatz may fail. Finally, we also resolve the isomorphism problem for tensor algebras of subproduct systems: two such tensor algebras are (isometrically) isomorphic if and only if their subproduct systems are isomorphic in an appropriate sense.
In this article, the question of whether the Löwner partial order on the positive cone of an operator algebra is determined by the norm of any arbitrary Kubo–Ando mean is studied. The question was affirmatively answered for certain classes of Kubo–Ando means, yet the general case was left as an open problem. We here give a complete answer to this question, by showing that the norm of every symmetric Kubo–Ando mean is order-determining, i.e., if $A,B\in \mathcal B(H)^{++}$ satisfy $\Vert A\sigma X\Vert \le \Vert B\sigma X\Vert $ for every $X\in \mathcal {A}^{{++}}$, where $\mathcal A$ is the C*-subalgebra generated by $B-A$ and I, then $A\le B$.
We investigate almost minimal actions of abelian groups and their crossed products. As an application, given multiplicatively independent integers p and q, we show that Furstenberg’s $\times p,\times q$ conjecture holds if and only if the canonical trace is the only faithful extreme tracial state on the $C^*$-algebra of the group $\mathbb {Z}[\frac {1}{pq}]\rtimes \mathbb {Z}^2$. We also compute the primitive ideal space and K-theory of $C^*(\mathbb {Z}[\frac {1}{pq}]\rtimes \mathbb {Z}^2)$.
We single out a large class of groups ${\rm {\boldsymbol {\mathscr {M}}}}$ for which the following unique prime factorization result holds: if $\Gamma _1,\ldots,\Gamma _n\in {\rm {\boldsymbol {\mathscr {M}}}}$ and $\Gamma _1\times \cdots \times \Gamma _n$ is measure equivalent to a product $\Lambda _1\times \cdots \times \Lambda _m$ of infinite icc groups, then $n \ge m$, and if $n = m$, then, after permutation of the indices, $\Gamma _i$ is measure equivalent to $\Lambda _i$, for all $1\leq i\leq n$. This provides an analogue of Monod and Shalom's theorem [Orbit equivalence rigidity and bounded cohomology, Ann. of Math. 164 (2006), 825–878] for groups that belong to ${\rm {\boldsymbol {\mathscr {M}}}}$. Class ${\rm {\boldsymbol {\mathscr {M}}}}$ is constructed using groups whose von Neumann algebras admit an s-malleable deformation in the sense of Sorin Popa and it contains all icc non-amenable groups $\Gamma$ for which either (i) $\Gamma$ is an arbitrary wreath product group with amenable base or (ii) $\Gamma$ admits an unbounded 1-cocycle into its left regular representation. Consequently, we derive several orbit equivalence rigidity results for actions of product groups that belong to ${\rm {\boldsymbol {\mathscr {M}}}}$. Finally, for groups $\Gamma$ satisfying condition (ii), we show that all embeddings of group von Neumann algebras of non-amenable inner amenable groups into $L(\Gamma )$ are ‘rigid’. In particular, we provide an alternative solution to a question of Popa that was recently answered by Ding, Kunnawalkam Elayavalli, and Peterson [Properly Proximal von Neumann Algebras, Preprint (2022), arXiv:2204.00517].
We show that all values in the interval $[0,{\pi }/{2}]$ can be attained as interior angles between intermediate subalgebras (as introduced by Bakshi and the first named author [‘Lattice of intermediate subalgebras’, J. Lond. Math. Soc. (2)104(2) (2021), 2082–2127]) of a certain inclusion of simple unital $C^*$-algebras. We also calculate the interior angles between intermediate crossed product subalgebras of any inclusion of crossed product algebras corresponding to any action of a countable discrete group and its subgroups on a unital $C^*$-algebra.
Orthomodular logic is a weakening of quantum logic in the sense of Birkhoff and von Neumann. Orthomodular logic is shown to be a nonlinear noncommutative logic. Sequents are given a physically motivated semantics that is consistent with exactly one semantics for propositional formulas that use negation, conjunction, and implication. In particular, implication must be interpreted as the Sasaki arrow, which satisfies the deduction theorem in this logic. As an application, this deductive system is extended to two systems of predicate logic: the first is sound for Takeuti’s quantum set theory, and the second is sound for a variant of Weaver’s quantum logic.
The existence of isometric embedding of $S_q^m$ into $S_p^n$, where $1\leq p\neq q\leq \infty$ and $m,n\geq 2$, has been recently studied in [6]. In this article, we extend the study of isometric embeddability beyond the above-mentioned range of $p$ and $q$. More precisely, we show that there is no isometric embedding of the commutative quasi-Banach space $\ell _q^m(\mathbb {R})$ into $\ell _p^n(\mathbb {R})$, where $(q,p)\in (0,\infty )\times (0,1)$ and $p\neq q$. As non-commutative quasi-Banach spaces, we show that there is no isometric embedding of $S_q^m$ into $S_p^n$, where $(q,p)\in (0,2)\setminus \{1\}\times (0,1)$$\cup \, \{1\}\times (0,1)\setminus \left \{\!\frac {1}{n}:n\in \mathbb {N}\right \}$$\cup \, \{\infty \}\times (0,1)\setminus \left \{\!\frac {1}{n}:n\in \mathbb {N}\right \}$ and $p\neq q$. Moreover, in some restrictive cases, we also show that there is no isometric embedding of $S_q^m$ into $S_p^n$, where $(q,p)\in [2, \infty )\times (0,1)$. A new tool in our paper is the non-commutative Clarkson's inequality for Schatten class operators. Other tools involved are the Kato–Rellich theorem and multiple operator integrals in perturbation theory, followed by intricate computations involving power-series analysis.
Consider a minimal-free topological dynamical system $(X, \mathbb Z^d)$. It is shown that the radius of comparison of the crossed product C*-algebra $\mathrm {C}(X) \rtimes \mathbb Z^d$ is at most half the mean topological dimension of $(X, \mathbb Z^d)$. As a consequence, the C*-algebra $\mathrm {C}(X) \rtimes \mathbb Z^d$ is classified by the Elliott invariant if the mean dimension of $(X, \mathbb Z^d)$ is zero.
In this paper, a notion of non-microstate bi-free entropy with respect to completely positive maps is constructed thereby extending the notions of non-microstate bi-free entropy and free entropy with respect to a completely positive map. By extending the operator-valued bi-free structures to allow for more analytical arguments, a notion of conjugate variables is constructed using both moment and cumulant expressions. The notions of free Fisher information and entropy are then extended to this setting and used to show minima of the Fisher information and maxima of the non-microstate bi-free entropy at bi-R-diagonal elements.