To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we perform a detailed spectral study of the liberation process associated with two symmetries of arbitrary ranks: $(R,S)\mapsto (R,U_{t}SU_{t}^{\ast })_{t\geqslant 0}$, where $(U_{t})_{t\geqslant 0}$ is a free unitary Brownian motion freely independent from $\{R,S\}$. Our main tool is free stochastic calculus which allows to derive a partial differential equation (PDE) for the Herglotz transform of the unitary process defined by $Y_{t}:=RU_{t}SU_{t}^{\ast }$. It turns out that this is exactly the PDE governing the flow of an analytic function transform of the spectral measure of the operator $X_{t}:=PU_{t}QU_{t}^{\ast }P$ where $P,Q$ are the orthogonal projections associated to $R,S$. Next, we relate the two spectral measures of $RU_{t}SU_{t}^{\ast }$ and of $PU_{t}QU_{t}^{\ast }P$ via their moment sequences and use this relationship to develop a theory of subordination for the boundary values of the Herglotz transform. In particular, we explicitly compute the subordinate function and extend its inverse continuously to the unit circle. As an application, we prove the identity $i^{\ast }(\mathbb{C}P+\mathbb{C}(I-P);\mathbb{C}Q+\mathbb{C}(I-Q))=-\unicode[STIX]{x1D712}_{\text{orb}}(P,Q)$.
In this paper, we define the notion of monic representation for the $C^{\ast }$-algebras of finite higher-rank graphs with no sources, and we undertake a comprehensive study of them. Monic representations are the representations that, when restricted to the commutative $C^{\ast }$-algebra of the continuous functions on the infinite path space, admit a cyclic vector. We link monic representations to the $\unicode[STIX]{x1D6EC}$-semibranching representations previously studied by Farsi, Gillaspy, Kang and Packer (Separable representations, KMS states, and wavelets for higher-rank graphs. J. Math. Anal. Appl.434 (2015), 241–270) and also provide a universal representation model for non-negative monic representations.
In this paper, we give a complete description of left symmetric points forBirkhoff orthogonality in the preduals of von Neumann algebras. As aconsequence, except for $\mathbb{C}$, $\ell _{\infty }^{2}$ and $M_{2}(\mathbb{C})$, there are no von Neumann algebras whose preduals havenonzero left symmetric points for Birkhoff orthogonality.
An ergodic probability measure preserving (p.m.p.) equivalence relation ${\mathcal{R}}$ is said to be stable if ${\mathcal{R}}\cong {\mathcal{R}}\times {\mathcal{R}}_{0}$ where ${\mathcal{R}}_{0}$ is the unique hyperfinite ergodic type $\text{II}_{1}$ equivalence relation. We prove that a direct product ${\mathcal{R}}\times {\mathcal{S}}$ of two ergodic p.m.p. equivalence relations is stable if and only if one of the two components ${\mathcal{R}}$ or ${\mathcal{S}}$ is stable. This result is deduced from a new local characterization of stable equivalence relations. The similar question on McDuff $\text{II}_{1}$ factors is also discussed and some partial results are given.
For a closed subgroup of a locally compact group the Rieffel induction process gives rise to a C*-correspondence over the C*-algebra of the subgroup. We study the associated Cuntz–Pimsner algebra and show that, by varying the subgroup to be open, compact, or discrete, there are connections with the Exel–Pardo correspondence arising from a cocycle, and also with graph algebras.
We study the finite versus infinite nature of C$^{\ast }$-algebras arising from étale groupoids. For an ample groupoid $G$, we relate infiniteness of the reduced C$^{\ast }$-algebra $\text{C}_{r}^{\ast }(G)$ to notions of paradoxicality of a K-theoretic flavor. We construct a pre-ordered abelian monoid $S(G)$ which generalizes the type semigroup introduced by Rørdam and Sierakowski for totally disconnected discrete transformation groups. This monoid characterizes the finite/infinite nature of the reduced groupoid C$^{\ast }$-algebra of $G$ in the sense that if $G$ is ample, minimal, topologically principal, and $S(G)$ is almost unperforated, we obtain a dichotomy between the stably finite and the purely infinite for $\text{C}_{r}^{\ast }(G)$. A type semigroup for totally disconnected topological graphs is also introduced, and we prove a similar dichotomy for these graph $\text{C}^{\ast }$-algebras as well.
Let $M$ be a $\text{II}_{1}$ factor and let ${\mathcal{F}}(M)$ denote the fundamental group of $M$. In this article, we study the following property of $M$: for any $\text{II}_{1}$ factor $B$, we have ${\mathcal{F}}(M\,\overline{\otimes }\,B)={\mathcal{F}}(M){\mathcal{F}}(B)$. We prove that for any subgroup $G\leqslant \mathbb{R}_{+}^{\ast }$ which is realized as a fundamental group of a $\text{II}_{1}$ factor, there exists a $\text{II}_{1}$ factor $M$ which satisfies this property and whose fundamental group is $G$. Using this, we deduce that if $G,H\leqslant \mathbb{R}_{+}^{\ast }$ are realized as fundamental groups of $\text{II}_{1}$ factors, then so are groups $G\cdot H$ and $G\cap H$.
We obtain intertwining dilation theorems for non-commutative regular domains 𝒟f and non-commutative varieties 𝒱J in B(𝓗)n, which generalize Sarason and Szőkefalvi-Nagy and Foiaş's commutant lifting theorem for commuting contractions. We present several applications including a new proof for the commutant lifting theorem for pure elements in the domain 𝒟f (respectively, variety 𝒱J ) as well as a Schur-type representation for the unit ball of the Hardy algebra associated with the variety 𝒱J. We provide Andô-type dilations and inequalities for bi-domains 𝒟f ×c 𝒟g consisting of all pairs (X,Y ) of tuples X := (X1,…, Xn1) ∊ 𝒟f and Y := (Y1,…, Yn2) ∊ 𝒟g that commute, i.e. each entry of X commutes with each entry of Y . The results are new, even when n1 = n2 = 1. In this particular case, we obtain extensions of Andô's results and Agler and McCarthy's inequality for commuting contractions to larger classes of commuting operators. All the results are extended to bi-varieties 𝒱J1×c 𝒱J2, where 𝒱J1 and 𝒱J2 are non-commutative varieties generated by weak-operator-topology-closed two-sided ideals in non-commutative Hardy algebras. The commutative case and the matrix case when n1 = n2 = 1 are also discussed.
We prove two results on the tube algebras of rigid C*-tensor categories. The first is that the tube algebra of the representation category of a compact quantum group G is a full corner of the Drinfeld double of G. As an application, we obtain some information on the structure of the tube algebras of the Temperley–Lieb categories 𝒯ℒ(d) for d > 2. The second result is that the tube algebras of weakly Morita equivalent C*-tensor categories are strongly Morita equivalent. The corresponding linking algebra is described as the tube algebra of the 2-category defining the Morita context.
For a C*-algebra A, determining the Cuntz semigroup Cu(A ⊗) in terms of Cu(A) is an important problem, which we approach from the point of view of semigroup tensor products in the category of abstract Cuntz semigroups by analysing the passage of significant properties from Cu(A) to Cu(A)⊗Cu Cu(). We describe the effect of the natural map Cu(A) → Cu(A)⊗Cu Cu() in the order of Cu(A), and show that if A has real rank 0 and no elementary subquotients, Cu(A)⊗Cu Cu() enjoys the corresponding property of having a dense set of (equivalence classes of) projections. In the simple, non-elementary, real rank 0 and stable rank 1 situation, our investigations lead us to identify almost unperforation for projections with the fact that tensoring with is inert at the level of the Cuntz semigroup.
We prove some stability results for certain classes of C*-algebras. We prove that, whenever A is a finite-dimensional C*-algebra, B is a C*-algebra and ϕ: A → B is approximately a *-homomorphism, there is an actual *-homomorphism close to ϕ by a factor depending only on how far ϕ is from being a *-homomorphism and not on A or B.
We provide an equivariant extension of the bivariant Cuntz semigroup introduced in previous work for the case of compact group actions over C*-algebras. Its functoriality properties are explored, and some well-known classification results are retrieved. Connections with crossed products are investigated, and a concrete presentation of equivariant Cuntz homology is provided. The theory that is here developed can be used to define the equivariant Cuntz semigroup. We show that the object thus obtained coincides with the one recently proposed by Gardella [‘Regularity properties and Rokhlin dimension for compact group actions’, Houston J. Math.43(3) (2017), 861–889], and we complement their work by providing an open projection picture of it.
We define branching systems for finitely aligned higher-rank graphs. From these, we construct concrete representations of higher-rank graph C*-algebras on Hilbert spaces. We prove a generalized Cuntz–Krieger uniqueness theorem for periodic single-vertex 2-graphs. We use this result to give a sufficient condition under which representations of periodic single-vertex 2-graph C*-algebras arising from branching systems are faithful.
To explore the difficulties of classifying actions with the tracial Rokhlin property using K-theoretic data, we construct two $\mathbb{Z}_{2}$ actions $\unicode[STIX]{x1D6FC}_{1},\unicode[STIX]{x1D6FC}_{2}$ on a simple unital AF algebra $A$ such that $\unicode[STIX]{x1D6FC}_{1}$ has the tracial Rokhlin property and $\unicode[STIX]{x1D6FC}_{2}$ does not, while $(\unicode[STIX]{x1D6FC}_{1})_{\ast }=(\unicode[STIX]{x1D6FC}_{2})_{\ast }$, where $(\unicode[STIX]{x1D6FC}_{i})_{\ast }$ is the induced map by $\unicode[STIX]{x1D6FC}_{i}$ acting on $K_{0}(A)$ for $i=1,2$.
We show that if A is a compact C*-algebra without identity that has a faithful *-representation in the C*-algebra of all compact operators on a separable Hilbert space and its multiplier algebra admits a minimal central projection p such that pA is infinite-dimensional, then there exists a Hilbert A1-module admitting no frames, where A1 is the unitization of A. In particular, there exists a frame-less Hilbert C*-module over the C*-algebra $K(\ell^2) \dotplus \mathbb{C}I_{\ell^2}$.
Many fundamental properties of graph C*-algebras may be determined directly from the structure of the underlying graph, and because of this, they have been celebrated as C*-algebras that can be seen. This paper shows how permutative endomorphisms of graph C*-algebras can be represented by labelled directed multigraphs that give visual representations of the endomorphisms and facilitate computations. This formalism provides a useful calculus for permutative automorphisms and allows efficient exhaustive construction of such automorphisms.
We show that if a unital injective endomorphism of a $C^{\ast }$-algebra admits a transfer operator, then both of them are compressions of mutually inverse automorphisms of a bigger algebra. More generally, every interaction group – in the sense of Exel – extending an action of an Ore semigroup by injective unital endomorphisms of a $C^{\ast }$-algebra, admits a dilation to an action of the corresponding enveloping group on another unital $C^{\ast }$-algebra, of which the former is a $C^{\ast }$-subalgebra: the interaction group is obtained by composing the action with a conditional expectation. The dilation is essentially unique if a certain natural condition of minimality is imposed, and it is faithful if and only if the interaction group is also faithful.
We shall introduce the notions of strong Morita equivalence for unital inclusions of unital $C^{\ast }$-algebras and conditional expectations from an equivalence bimodule onto its closed subspace with respect to conditional expectations from unital $C^{\ast }$-algebras onto their unital $C^{\ast }$-subalgebras. Also, we shall study their basic properties.
We provide a new computation of the K-theory of the group C*-algebra of the solvable Baumslag–Solitar group BS(1, n) (n ≠ 1); our computation is based on the Pimsner–Voiculescu 6-terms exact sequence, by viewing BS(1, n) as a semi-direct product ℤ[1/n] ⋊ ℤ. We deduce from it a new proof of the Baum–Connes conjecture with trivial coefficients for BS(1, n).
Let A and B be arbitrary C*-algebras, we prove that the existence of a Hilbert A–B-bimodule of finite index ensures that the WEP, QWEP, and LLP along with other finite-dimensional approximation properties such as CBAP and (S)OAP are shared by A and B. For this, we first study the stability of the WEP, QWEP, and LLP under Morita equivalence of C*-algebras. We present examples of Hilbert A–B-bimodules, which are not of finite index, while such properties are shared between A and B. To this end, we study twisted crossed products by amenable discrete groups.