We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this article, we establish three new versions of Landau-type theorems for bounded bi-analytic functions of the form $F(z)=\bar {z}G(z)+H(z)$, where G and H are analytic in the unit disk with $G(0)=H(0)=0$ and $H'(0)=1$. In particular, two of them are sharp, while the other one either generalizes or improves the corresponding result of Abdulhadi and Hajj. As consequences, several new sharp versions of Landau-type theorems for certain subclasses of bounded biharmonic mappings are proved.
In this article, we study the Bohr operator for the operator-valued subordination class $S(f)$ consisting of holomorphic functions subordinate to f in the unit disk $\mathbb {D}:=\{z \in \mathbb {C}: |z|<1\}$, where $f:\mathbb {D} \rightarrow \mathcal {B}(\mathcal {H})$ is holomorphic and $\mathcal {B}(\mathcal {H})$ is the algebra of bounded linear operators on a complex Hilbert space $\mathcal {H}$. We establish several subordination results, which can be viewed as the analogs of a couple of interesting subordination results from scalar-valued settings. We also obtain a von Neumann-type inequality for the class of analytic self-mappings of the unit disk $\mathbb {D}$ which fix the origin. Furthermore, we extensively study Bohr inequalities for operator-valued polyanalytic functions in certain proper simply connected domains in $\mathbb {C}$. We obtain Bohr radius for the operator-valued polyanalytic functions of the form $F(z)= \sum _{l=0}^{p-1} \overline {z}^l \, f_{l}(z) $, where $f_{0}$ is subordinate to an operator-valued convex biholomorphic function, and operator-valued starlike biholomorphic function in the unit disk $\mathbb {D}$.
In this article, we prove several refined versions of the classical Bohr inequality for the class of analytic self-mappings on the unit disk $ \mathbb {D} $, class of analytic functions $ f $ defined on $ \mathbb {D} $ such that $\mathrm {Re}\left (f(z)\right )<1 $, and class of subordination to a function g in $ \mathbb {D} $. Consequently, the main results of this article are established as certainly improved versions of several existing results. All the results are proved to be sharp.
The sharp bound for the third Hankel determinant for the coefficients of the inverse function of convex functions is obtained, thus answering a recent conjecture concerning invariance of coefficient functionals for convex functions.
For any real polynomial $p(x)$ of even degree k, Shapiro [‘Problems around polynomials: the good, the bad and the ugly$\ldots $’, Arnold Math. J.1(1) (2015), 91–99] proposed the conjecture that the sum of the number of real zeros of the two polynomials $(k-1)(p{'}(x))^{2}-kp(x)p{"}(x)$ and $p(x)$ is larger than 0. We prove that the conjecture is true except in one case: when the polynomial $p(x)$ has no real zeros, the derivative polynomial $p{'}(x)$ has one real simple zero, that is, $p{'}(x)=C(x)(x-w)$, where $C(x)$ is a polynomial with $C(w)\ne 0$, and the polynomial $(k-1)(C(x))^2(x-w)^{2}-kp(x)C{'}(x)(x-w)-kC(x)p(x)$ has no real zeros.
This paper mainly considers the problem of generalizing a certain class of analytic functions by means of a class of difference operators. We consider some relations between starlike or convex functions and functions belonging to such classes. Some other useful properties of these classes are also considered.
where $h$ is a convex univalent function with $0\in h(\mathbb {D}).$ The proof of the main result is based on the original lemma for convex univalent functions and offers a new approach in the theory. In particular, the above differential subordination leads to generalizations of the well-known Briot-Bouquet differential subordination. Appropriate applications among others related to the differential subordination of harmonic mean are demonstrated. Related problems concerning differential equations are indicated.
Let $ \mathcal {B} $ be the class of analytic functions $ f $ in the unit disk $ \mathbb {D}=\{z\in \mathbb {C} : |z|<1\} $ such that $ |f(z)|<1 $ for all $ z\in \mathbb {D} $. If $ f\in \mathcal {B} $ of the form $ f(z)=\sum _{n=0}^{\infty }a_nz^n $, then $ \sum _{n=0}^{\infty }|a_nz^n|\leq 1 $ for $ |z|=r\leq 1/3 $ and $ 1/3 $ cannot be improved. This inequality is called Bohr inequality and the quantity $ 1/3 $ is called Bohr radius. If $ f\in \mathcal {B} $ of the form $ f(z)=\sum _{n=0}^{\infty }a_nz^n $, then $ |\sum _{n=0}^{N}a_nz^n|<1\;\; \mbox {for}\;\; |z|<{1}/{2} $ and the radius $ 1/2 $ is the best possible for the class $ \mathcal {B} $. This inequality is called Bohr–Rogosinski inequality and the corresponding radius is called Bohr–Rogosinski radius. Let $ \mathcal {H} $ be the class of all complex-valued harmonic functions $ f=h+\bar {g} $ defined on the unit disk $ \mathbb {D} $, where $ h $ and $ g $ are analytic in $ \mathbb {D} $ with the normalization $ h(0)=h^{\prime }(0)-1=0 $ and $ g(0)=0 $. Let $ \mathcal {H}_0=\{f=h+\bar {g}\in \mathcal {H} : g^{\prime }(0)=0\}. $ For $ \alpha \geq 0 $ and $ 0\leq \beta <1 $, let
be a class of close-to-convex harmonic mappings in $ \mathbb {D} $. In this paper, we prove the sharp Bohr–Rogosinski radius for the class $ \mathcal {W}^{0}_{\mathcal {H}}(\alpha , \beta ) $.
Granville recently asked how the Mahler measure behaves in the context of polynomial dynamics. For a polynomial $f(z)=z^d+\cdots \in {\mathbb C}[z],\ \deg (f)\ge 2,$ we show that the Mahler measure of the iterates $f^n$ grows geometrically fast with the degree $d^n,$ and find the exact base of that exponential growth. This base is expressed via an integral of $\log ^+|z|$ with respect to the invariant measure of the Julia set for the polynomial $f.$ Moreover, we give sharp estimates for such an integral when the Julia set is connected.
The purpose of this paper is to initiate a theory concerning the dynamics of asymptotically holomorphic polynomial-like maps. Our maps arise naturally as deep renormalizations of asymptotically holomorphic extensions of $C^r$ ($r>3$) unimodal maps that are infinitely renormalizable of bounded type. Here we prove a version of the Fatou–Julia–Sullivan theorem and a topological straightening theorem in this setting. In particular, these maps do not have wandering domains and their Julia sets are locally connected.
We prove several sharp distortion and monotonicity theorems for spherically convex functions defined on the unit disk involving geometric quantities such as spherical length, spherical area, and total spherical curvature. These results can be viewed as geometric variants of the classical Schwarz lemma for spherically convex functions.
We consider an analogue of Kontsevich’s matrix Airy function where the cubic potential
$\textrm{Tr}(\Phi^3)$
is replaced by a quartic term
$\textrm{Tr}\!\left(\Phi^4\right)$
. Cumulants of the resulting measure are known to decompose into cycle types for which a recursive system of equations can be established. We develop a new, purely algebraic geometrical solution strategy for the two initial equations of the recursion, based on properties of Cauchy matrices. These structures led in subsequent work to the discovery that the quartic analogue of the Kontsevich model obeys blobbed topological recursion.
We characterize zero sets for which every subset remains a zero set too in the Fock space
$\mathcal {F}^p$
,
$1\leq p<\infty $
. We are also interested in the study of a stability problem for some examples of uniqueness set with zero excess in Fock spaces.
Two boundary value problems are solved for potential steady-state 2D Darcian seepage flows towards a line sink in a homogeneous isotropic soil from a ponded land surface, which is not flat but profiled. The aim of this shaping is ‘uniformisation’ of the velocity and travel time between this surface and a horizontal drain modelled by a line sink. The complex potential domain is a half-strip, which is mapped onto a reference plane. Either the velocity magnitude or a vertical coordinate along the land surface are control variables. Either a complexified velocity or complex physical coordinate is reconstructed by solving mixed boundary-value problems with the help of the Keldysh-Sedov formula via singular integrals, the kernel of which are the control functions. The flow nets, isotachs and breakthrough curves are found by computer algebra routines. A designed soil hump above the drain ameliorates an unwanted ‘preferential flow’ (shortcut) and improves leaching of salinised soil of a cropfield during a pre-cultivation season.
For a domain G in the one-point compactification
$\overline{\mathbb{R}}^n = {\mathbb{R}}^n \cup \{ \infty\}$
of
${\mathbb{R}}^n, n \geqslant 2$
, we characterise the completeness of the modulus metric
$\mu_G$
in terms of a potential-theoretic thickness condition of
$\partial G\,,$
Martio’s M-condition [35]. Next, we prove that
$\partial G$
is uniformly perfect if and only if
$\mu_G$
admits a minorant in terms of a Möbius invariant metric. Several applications to quasiconformal maps are given.
In this paper, we consider the family of nth degree polynomials whose coefficients form a log-convex sequence (up to binomial weights), and investigate their roots. We study, among others, the structure of the set of roots of such polynomials, showing that it is a closed convex cone in the upper half-plane, which covers its interior when n tends to infinity, and giving its precise description for every
$n\in \mathbb {N}$
,
$n\geq 2$
. Dual Steiner polynomials of star bodies are a particular case of them, and so we derive, as a consequence, further properties for their roots.
We extend our study of variability regions, Ali et al. [‘An application of Schur algorithm to variability regions of certain analytic functions–I’, Comput. Methods Funct. Theory, to appear] from convex domains to starlike domains. Let
$\mathcal {CV}(\Omega )$
be the class of analytic functions f in
${\mathbb D}$
with
$f(0)=f'(0)-1=0$
satisfying
$1+zf''(z)/f'(z) \in {\Omega }$
. As an application of the main result, we determine the variability region of
$\log f'(z_0)$
when f ranges over
$\mathcal {CV}(\Omega )$
. By choosing a particular
$\Omega $
, we obtain the precise variability regions of
$\log f'(z_0)$
for some well-known subclasses of analytic and univalent functions.
The Julia set of the exponential family
$E_{\kappa }:z\mapsto \kappa e^z$
,
$\kappa>0$
was shown to be the entire complex plane when
$\kappa>1/e$
essentially by Misiurewicz. Later, Devaney and Krych showed that for
$0<\kappa \leq 1/e$
the Julia set is an uncountable union of pairwise disjoint simple curves tending to infinity. Bergweiler generalized the result of Devaney and Krych for a three-dimensional analogue of the exponential map called the Zorich map. We show that the Julia set of certain Zorich maps with symmetry is the whole of
$\mathbb {R}^3$
, generalizing Misiurewicz’s result. Moreover, we show that the periodic points of the Zorich map are dense in
$\mathbb {R}^3$
and that its escaping set is connected, generalizing a result of Rempe. We also generalize a theorem of Ghys, Sullivan and Goldberg on the measurable dynamics of the exponential.
We begin the study of Hankel matrices whose entries are logarithmic coefficients of univalent functions and give sharp bounds for the second Hankel determinant of logarithmic coefficients of convex and starlike functions.
The classical model for studying one-phase Hele-Shaw flows is based on a highly nonlinear moving boundary problem with the fluid velocity related to pressure gradients via a Darcy-type law. In a standard configuration with the Hele-Shaw cell made up of two flat stationary plates, the pressure is harmonic. Therefore, conformal mapping techniques and boundary integral methods can be readily applied to study the key interfacial dynamics, including the Saffman–Taylor instability and viscous fingering patterns. As well as providing a brief review of these key issues, we present a flexible numerical scheme for studying both the standard and nonstandard Hele-Shaw flows. Our method consists of using a modified finite-difference stencil in conjunction with the level-set method to solve the governing equation for pressure on complicated domains and track the location of the moving boundary. Simulations show that our method is capable of reproducing the distinctive morphological features of the Saffman–Taylor instability on a uniform computational grid. By making straightforward adjustments, we show how our scheme can easily be adapted to solve for a wide variety of nonstandard configurations, including cases where the gap between the plates is linearly tapered, the plates are separated in time, and the entire Hele-Shaw cell is rotated at a given angular velocity.