To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that if $f:\mathbb{B}^n \to \mathbb{B}^n$, for n ≥ 2, is a homeomorphism with bounded skew over all equilateral hyperbolic triangles, then f is in fact quasiconformal. Conversely, we show that if $f:\mathbb{B}^n \to \mathbb{B}^n$ is quasiconformal then f is η-quasisymmetric in the hyperbolic metric, where η depends only on n and K. We obtain the same result for hyperbolic n-manifolds. Analogous results in $\mathbb{R}^n$, and metric spaces that behave like $\mathbb{R}^n$, are known, but as far as we are aware, these are the first such results in the hyperbolic setting, which is the natural metric to use on $\mathbb{B}^n$.
In this paper we consider the following problem: let Xk, be a Banach space with a normalised basis (e(k, j))j, whose biorthogonals are denoted by ${(e_{(k,j)}^*)_j}$, for $k\in\N$, let $Z=\ell^\infty(X_k:k\kin\N)$ be their l∞-sum, and let $T:Z\to Z$ be a bounded linear operator with a large diagonal, i.e.,
Under which condition does the identity on Z factor through T? The purpose of this paper is to formulate general conditions for which the answer is positive.
Li et al. [‘Weak 2-local isometries on uniform algebras and Lipschitz algebras’, Publ. Mat.63 (2019), 241–264] generalized the Kowalski–Słodkowski theorem by establishing the following spherical variant: let A be a unital complex Banach algebra and let $\Delta : A \to \mathbb {C}$ be a mapping satisfying the following properties:
(a)$\Delta $ is 1-homogeneous (that is, $\Delta (\lambda x)=\lambda \Delta (x)$ for all $x \in A$, $\lambda \in \mathbb C$);
Then $\Delta $ is linear and there exists $\lambda _{0} \in \mathbb {T}$ such that $\lambda _{0}\Delta $ is multiplicative. In this note we prove that if (a) is relaxed to $\Delta (0)=0$, then $\Delta $ is complex-linear or conjugate-linear and $\overline {\Delta (\mathbf {1})}\Delta $ is multiplicative. We extend the Kowalski–Słodkowski theorem as a conclusion. As a corollary, we prove that every 2-local map in the set of all surjective isometries (without assuming linearity) on a certain function space is in fact a surjective isometry. This gives an affirmative answer to a problem on 2-local isometries posed by Molnár [‘On 2-local *-automorphisms and 2-local isometries of B(H)', J. Math. Anal. Appl.479(1) (2019), 569–580] and also in a private communication between Molnár and O. Hatori, 2018.
It is known that if $S(z)$ is a non-constant singular inner function defined on the unit disk, then $\min _{|z|\le r}|S(z)|\to 0$ as $r\to 1^-$. We show that the convergence can be arbitrarily slow.
We give conditions ensuring that the Fatou set and the complement of the fast escaping set of an exponential polynomial f both have finite Lebesgue measure. Essentially, these conditions are designed such that $|f(z)|\ge \exp (|z|^\alpha )$ for some $\alpha>0$ and all z outside a set of finite Lebesgue measure.
Many authors define an isometry of a metric space to be a distance-preserving map of the space onto itself. In this note, we discuss spaces for which surjectivity is a consequence of the distance-preserving property rather than an initial assumption. These spaces include, for example, the three classical (Euclidean, spherical, and hyperbolic) geometries of constant curvature that are usually discussed independently of each other. In this partly expository paper, we explore basic ideas about the isometries of a metric space, and apply these to various familiar metric geometries.
We prove several general conditional convergence results on ergodic averages for horocycle and geodesic subgroups of any continuous $\operatorname {SL}(2, \mathbb {R})$-action on a locally compact space. These results are motivated by theorems of Eskin, Mirzakhani and Mohammadi on the $\operatorname {SL}(2, \mathbb {R})$-action on the moduli space of Abelian differentials. By our argument we can derive from these theorems an improved version of the ‘weak convergence’ of push-forwards of horocycle measures under the geodesic flow and a short proof of weaker versions of theorems of Chaika and Eskin on Birkhoff genericity and Oseledets regularity in almost all directions for the Teichmüller geodesic flow.
In this paper, we mainly investigate two versions of the Bohr theorem for slice regular functions over the largest alternative division algebras of octonions $\mathbb {O}$. To this end, we establish the coefficient estimates for self-maps of the unit ball of $\mathbb {O}$ and the Carathéodory class in this setting. As a further application of the coefficient estimate, the 1/2-covering theorem is also proven for slice regular functions with convex image.
We prove that if f and g are holomorphic functions on an open connected domain, with the same moduli on two intersecting segments, then $f=g$ up to the multiplication of a unimodular constant, provided the segments make an angle that is an irrational multiple of $\pi $. We also prove that if f and g are functions in the Nevanlinna class, and if $|f|=|g|$ on the unit circle and on a circle inside the unit disc, then $f=g$ up to the multiplication of a unimodular constant.
For $n\geq 3$, let $Q_n\subset \mathbb {C}$ be an arbitrary regular n-sided polygon. We prove that the Cauchy transform $F_{Q_n}$ of the normalised two-dimensional Lebesgue measure on $Q_n$ is univalent and starlike but not convex in $\widehat {\mathbb {C}}\setminus Q_n$.
In this paper, we study the boundedness and compactness of the inclusion mapping from Dirichlet type spaces $\mathcal {D}^{p}_{p-1 }$ to tent spaces. Meanwhile, the boundedness, compactness, and essential norm of Volterra integral operators from Dirichlet type spaces $\mathcal {D}^{p}_{p-1 }$ to general function spaces are also investigated.
A classical theorem of Frei states that if $A_p$ is the last transcendental function in the sequence$A_0,\ldots ,A_{n-1}$ of entire functions, then each solution base of the differential equation $f^{(n)}+A_{n-1}f^{(n-1)}+\cdots +A_{1}f'+A_{0}f=0$ contains at least $n-p$ entire functions of infinite order. Here, the transcendental coefficient $A_p$ dominates the growth of the polynomial coefficients $A_{p+1},\ldots ,A_{n-1}$. By expressing the dominance of $A_p$ in different ways and allowing the coefficients $A_{p+1},\ldots ,A_{n-1}$ to be transcendental, we show that the conclusion of Frei’s theorem still holds along with an additional estimation on the asymptotic lower bound for the growth of solutions. At times, these new refined results give a larger number of linearly independent solutions of infinite order than the original theorem of Frei. For such solutions, we show that $0$ is the only possible finite deficient value. Previously, this property has been known to hold for so-called admissible solutions and is commonly cited as Wittich’s theorem. Analogous results are discussed for linear differential equations in the unit disc, as well as for complex difference and complex q-difference equations.
We show that condenser capacity varies continuously under holomorphic motions, and the corresponding family of the equilibrium measures of the condensers is continuous with respect to the weak-star convergence. We also study the behavior of uniformly perfect sets under holomorphic motions.
Let $M$ be a closed, oriented, and connected Riemannian $n$-manifold, for $n\geq 2$, which is not a rational homology sphere. We show that, for a non-constant and non-injective uniformly quasiregular self-map $f:M\rightarrow M$, the topological entropy $h(f)$ is $\log \deg f$. This proves Shub’s entropy conjecture in this case.
Let $f$ be analytic in the unit disk $\mathbb{D}=\{z\in \mathbb{C}:|z|<1\}$ and ${\mathcal{S}}$ be the subclass of normalised univalent functions given by $f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}$ for $z\in \mathbb{D}$. We give sharp upper and lower bounds for $|a_{3}|-|a_{2}|$ and other related functionals for the subclass ${\mathcal{F}}_{O}(\unicode[STIX]{x1D706})$ of Ozaki close-to-convex functions.
For any $\alpha \in \mathbb {R},$ we consider the weighted Taylor shift operators $T_{\alpha }$ acting on the space of analytic functions in the unit disc given by $T_{\alpha }:H(\mathbb {D})\rightarrow H(\mathbb {D}),$
We establish the optimal growth of frequently hypercyclic functions for$T_\alpha $ in terms of $L^p$ averages, $1\leq p\leq +\infty $. This allows us to highlight a critical exponent.
We study the geometry of the Thurston metric on the Teichmüller space of hyperbolic structures on a surface $S$. Some of our results on the coarse geometry of this metric apply to arbitrary surfaces $S$ of finite type; however, we focus particular attention on the case where the surface is a once-punctured torus. In that case, our results provide a detailed picture of the infinitesimal, local, and global behavior of the geodesics of the Thurston metric, as well as an analogue of Royden’s theorem.
The Fermat type functional equations $(*)\, f_1^n+f_2^n+\cdots +f_k^n=1$, where n and k are positive integers, are considered in the complex plane. Our focus is on equations of the form (*) where it is not known whether there exist non-constant solutions in one or more of the following four classes of functions: meromorphic functions, rational functions, entire functions, polynomials. For such equations, we obtain estimates on Nevanlinna functions that transcendental solutions of (*) would have to satisfy, as well as analogous estimates for non-constant rational solutions. As an application, it is shown that transcendental entire solutions of (*) when n = k(k − 1) with k ≥ 3, would have to satisfy a certain differential equation, which is a generalization of the known result when k = 3. Alternative proofs for the known non-existence theorems for entire and polynomial solutions of (*) are given. Moreover, some restrictions on degrees of polynomial solutions are discussed.