To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Spaces of power series solutions $y(\mathrm {t})$ in one variable $\mathrm {t}$ of systems of polynomial, algebraic, analytic or formal equations $f(\mathrm {t},\mathrm {y})=0$ can be viewed as ‘infinite-dimensional’ varieties over the ground field $\mathbf {k}$ as well as ‘finite-dimensional’ schemes over the power series ring $\mathbf {k}[[\mathrm {t}]]$. We propose to call these solution spaces arquile varieties, as an enhancement of the concept of arc spaces. It will be proven that arquile varieties admit a natural stratification ${\mathcal Y}=\bigsqcup {\mathcal Y}_d$, $d\in {\mathbb N}$, such that each stratum ${\mathcal Y}_d$ is isomorphic to a Cartesian product ${\mathcal Z}_d\times \mathbb A^{\infty }_{\mathbf {k}}$ of a finite-dimensional, possibly singular variety ${\mathcal Z}_d$ over $\mathbf {k}$ with an affine space $\mathbb A^{\infty }_{\mathbf {k}}$ of infinite dimension. This shows that the singularities of the solution space of $f(\mathrm {t},\mathrm {y})=0$ are confined, up to the stratification, to the finite-dimensional part.
Our results are established simultaneously for algebraic, convergent and formal power series, as well as convergent power series with prescribed radius of convergence. The key technical tool is a linearisation theorem, already used implicitly by Greenberg and Artin, showing that analytic maps between power series spaces can be essentially linearised by automorphisms of the source space.
Instead of stratifying arquile varieties, one may alternatively consider formal neighbourhoods of their regular points and reprove with similar methods the Grinberg–Kazhdan–Drinfeld factorisation theorem for arc spaces in the classical setting and in the more general setting.
In this paper, we give a generalization and improvement of the Pavlović result on the characterization of continuously differentiable functions in the Bloch space on the unit ball in $\mathbb {R}^{m}$. Then, we derive a Holland–Walsh type theorem for analytic normal mappings on the unit disk.
We prove several results on unavoidable families of meromorphic functions. For instance, we give new examples of families of cardinality 3 that are unavoidable with respect to the set of meromorphic functions on $\mathbb C$. We further obtain families consisting of less than three functions that are unavoidable with respect to certain subsets of meromorphic functions. In the other direction, we show that for every meromorphic function f, there exists an entire function that avoids f on $\mathbb C$.
Consider a component ${\cal Q}$ of a stratum in the moduli space of area-one abelian differentials on a surface of genus g. Call a property ${\cal P}$ for periodic orbits of the Teichmüller flow on ${\cal Q}$typical if the growth rate of orbits with property ${\cal P}$ is maximal. We show that the following property is typical. Given a continuous integrable cocycle over the Teichmüller flow with values in a vector bundle $V\to {\cal Q}$, the logarithms of the eigenvalues of the matrix defined by the cocycle and the orbit are arbitrarily close to the Lyapunov exponents of the cocycle for the Masur–Veech measure.
The Julia set of the exponential family $E_{\kappa }:z\mapsto \kappa e^z$, $\kappa>0$ was shown to be the entire complex plane when $\kappa>1/e$ essentially by Misiurewicz. Later, Devaney and Krych showed that for $0<\kappa \leq 1/e$ the Julia set is an uncountable union of pairwise disjoint simple curves tending to infinity. Bergweiler generalized the result of Devaney and Krych for a three-dimensional analogue of the exponential map called the Zorich map. We show that the Julia set of certain Zorich maps with symmetry is the whole of $\mathbb {R}^3$, generalizing Misiurewicz’s result. Moreover, we show that the periodic points of the Zorich map are dense in $\mathbb {R}^3$ and that its escaping set is connected, generalizing a result of Rempe. We also generalize a theorem of Ghys, Sullivan and Goldberg on the measurable dynamics of the exponential.
We prove by methods of harmonic analysis a result on the existence of solutions for twisted cohomological equations on translation surfaces with loss of derivatives at most $3+$ in Sobolev spaces. As a consequence we prove that product translation flows on (three-dimensional) translation manifolds which are products of a (higher-genus) translation surface with a (flat) circle are stable in the sense of A. Katok. In turn, our result on product flows implies a stability result of time-$\tau $ maps of translation flows on translation surfaces.
This paper is part of a program to understand the parameter spaces of dynamical systems generated by meromorphic functions with finitely many singular values. We give a full description of the parameter space for a specific family based on the exponential function that has precisely two finite asymptotic values and one attracting fixed point. It represents a step beyond the previous work by Goldberg and Keen [The mapping class group of a generic quadratic rational map and automorphisms of the 2-shift. Invent. Math.101(2) (1990), 335–372] on degree two rational functions with analogous constraints: two critical values and an attracting fixed point. What is interesting and promising for pushing the general program even further is that, despite the presence of the essential singularity, our new functions exhibit a dynamic structure as similar as one could hope to the rational case, and that the philosophy of the techniques used in the rational case could be adapted.
We show that any weakly separated Bessel system of model spaces in the Hardy space on the unit disc is a Riesz system and we highlight some applications to interpolating sequences of matrices. This will be done without using the recent solution of the Feichtinger conjecture, whose natural generalization to multidimensional model subspaces of ${\mathrm {H}}^2$ turns out to be false.
We construct two bounded functional calculi for sectorial operators on Banach spaces, which enhance the functional calculus for analytic Besov functions, by extending the class of functions, generalising and sharpening estimates and adapting the calculus to the angle of sectoriality. The calculi are based on appropriate reproducing formulas, they are compatible with standard functional calculi and they admit appropriate convergence lemmas and spectral mapping theorems. To achieve this, we develop the theory of associated function spaces in ways that are interesting and significant. As consequences of our calculi, we derive several well-known operator norm estimates and provide generalisations of some of them.
We begin the study of Hankel matrices whose entries are logarithmic coefficients of univalent functions and give sharp bounds for the second Hankel determinant of logarithmic coefficients of convex and starlike functions.
The classical model for studying one-phase Hele-Shaw flows is based on a highly nonlinear moving boundary problem with the fluid velocity related to pressure gradients via a Darcy-type law. In a standard configuration with the Hele-Shaw cell made up of two flat stationary plates, the pressure is harmonic. Therefore, conformal mapping techniques and boundary integral methods can be readily applied to study the key interfacial dynamics, including the Saffman–Taylor instability and viscous fingering patterns. As well as providing a brief review of these key issues, we present a flexible numerical scheme for studying both the standard and nonstandard Hele-Shaw flows. Our method consists of using a modified finite-difference stencil in conjunction with the level-set method to solve the governing equation for pressure on complicated domains and track the location of the moving boundary. Simulations show that our method is capable of reproducing the distinctive morphological features of the Saffman–Taylor instability on a uniform computational grid. By making straightforward adjustments, we show how our scheme can easily be adapted to solve for a wide variety of nonstandard configurations, including cases where the gap between the plates is linearly tapered, the plates are separated in time, and the entire Hele-Shaw cell is rotated at a given angular velocity.
Let $\mathcal {N}$ be the Nevanlinna class, and let B be a Blaschke product. It is shown that the natural invertibility criterion in the quotient algebra $\mathcal {N} / B \mathcal {N}$, that is, $|f| \ge e^{-H} $ on the set $B^{-1}\{0\}$ for some positive harmonic function H, holds if and only if the function $- \log |B|$ has a harmonic majorant on the set $\{z\in \mathbb {D}:\rho (z,\Lambda )\geq e^{-H(z)}\}$, at least for large enough functions H. We also study the corresponding class of positive harmonic functions H on the unit disc such that the latter condition holds. We also discuss the analogous invertibility problem in quotients of the Smirnov class.
In 1955, Lehto showed that, for every measurable function $\psi $ on the unit circle $\mathbb T,$ there is a function f holomorphic in the unit disc, having $\psi $ as radial limit a.e. on $\mathbb T.$ We consider an analogous problem for solutions f of homogenous elliptic equations $Pf=0$ and, in particular, for holomorphic functions on Riemann surfaces and harmonic functions on Riemannian manifolds.
For functions in $C^k(\mathbb {R})$ which commute with a translation, we prove a theorem on approximation by entire functions which commute with the same translation, with a requirement that the values of the entire function and its derivatives on a specified countable set belong to specified dense sets. Using this theorem, we show that if A and B are countable dense subsets of the unit circle $T\subseteq \mathbb {C}$ with $1\notin A$, $1\notin B$, then there is an analytic function $h\colon \mathbb {C}\setminus \{0\}\to \mathbb {C}$ that restricts to an order isomorphism of the arc $T\setminus \{1\}$ onto itself and satisfies $h(A)=B$ and $h'(z)\not =0$ when $z\in T$. This answers a question of P. M. Gauthier.
Complex linear differential equations with entire coefficients are studied in the situation where one of the coefficients is an exponential polynomial and dominates the growth of all the other coefficients. If such an equation has an exponential polynomial solution $f$, then the order of $f$ and of the dominant coefficient are equal, and the two functions possess a certain duality property. The results presented in this paper improve earlier results by some of the present authors, and the paper adjoins with two open problems.
We consider the problem of computing the partition function $\sum _x e^{f(x)}$, where $f: \{-1, 1\}^n \longrightarrow {\mathbb R}$ is a quadratic or cubic polynomial on the Boolean cube $\{-1, 1\}^n$. In the case of a quadratic polynomial f, we show that the partition function can be approximated within relative error $0 < \epsilon < 1$ in quasi-polynomial $n^{O(\ln n - \ln \epsilon )}$ time if the Lipschitz constant of the non-linear part of f with respect to the $\ell ^1$ metric on the Boolean cube does not exceed $1-\delta $, for any $\delta>0$, fixed in advance. For a cubic polynomial f, we get the same result under a somewhat stronger condition. We apply the method of polynomial interpolation, for which we prove that $\sum _x e^{\tilde {f}(x)} \ne 0$ for complex-valued polynomials $\tilde {f}$ in a neighborhood of a real-valued f satisfying the above mentioned conditions. The bounds are asymptotically optimal. Results on the zero-free region are interpreted as the absence of a phase transition in the Lee–Yang sense in the corresponding Ising model. The novel feature of the bounds is that they control the total interaction of each vertex but not every single interaction of sets of vertices.
Let f and g be two quasiregular maps in $\mathbb{R}^d$ that are of transcendental type and also satisfy $f\circ g =g \circ f$. We show that if the fast escaping sets of those functions are contained in their respective Julia sets then those two functions must have the same Julia set. We also obtain the same conclusion about commuting quasimeromorphic functions with infinite backward orbit of infinity. Furthermore we show that permutable quasiregular functions of the form f and $g = \phi \circ f$, where $\phi$ is a quasiconformal map, have the same Julia sets and that polynomial type quasiregular maps cannot commute with transcendental type ones unless their degree is less than or equal to their dilatation.
En s’appuyant sur la notion d’équivalence au sens de Bohr entre polynômes de Dirichlet et sur le fait que sur un corps quadratique la fonction zeta de Dedekind peut s’écrire comme produit de la fonction zeta de Riemann et d’une fonction L, nous montrons que, pour certaines valeurs du discriminant du corps quadratique, les sommes partielles de la fonction zeta de Dedekind ont leurs zéros dans des bandes verticales du plan complexe appelées bandes critiques et que les parties réelles de leurs zéros y sont denses.
In 1955, Lehto showed that, for every measurable function $\psi $ on the unit circle ${\mathbb T}$, there is a function f holomorphic in the unit disc ${{\mathbb D}}$, having $\psi $ as radial limit a.e. on ${\mathbb T}$. We consider an analogous boundary value problem, where the unit disc is replaced by a Stein domain on a complex manifold and radial approach to a boundary point p is replaced by (asymptotically) total approach to p.