To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we prove that the ratio of the modulus of the iterates of two points in an escaping Fatou component could be bounded even if the orbit of the component contains a sequence of annuli whose moduli tend to infinity, and this cannot happen when the maximal modulus of the meromorphic function is uniformly large enough. In this way we extend certain related results for entire functions to meromorphic functions with infinitely many poles.
We prove that the hitting measure is singular with respect to the Lebesgue measure for random walks driven by finitely supported measures on cocompact, hyperelliptic Fuchsian groups. Moreover, the Hausdorff dimension of the hitting measure is strictly less than one. Equivalently, the inequality between entropy and drift is strict. A similar statement is proven for Coxeter groups.
In this article, we study a generalized Bohr radius $R_{p, q}(X), p, q\in [1, \infty )$ defined for a complex Banach space X. In particular, we determine the exact value of $R_{p, q}(\mathbb {C})$ for the cases (i) $p, q\in [1, 2]$, (ii) $p\in (2, \infty ), q\in [1, 2]$, and (iii) $p, q\in [2, \infty )$. Moreover, we consider an n-variable version $R_{p, q}^n(X)$ of the quantity $R_{p, q}(X)$ and determine (i) $R_{p, q}^n(\mathcal {H})$ for an infinite-dimensional complex Hilbert space $\mathcal {H}$ and (ii) the precise asymptotic value of $R_{p, q}^n(X)$ as $n\to \infty $ for finite-dimensional X. We also study the multidimensional analog of a related concept called the p-Bohr radius. To be specific, we obtain the asymptotic value of the n-dimensional p-Bohr radius for bounded complex-valued functions, and in the vector-valued case, we provide a lower estimate for the same, which is independent of n.
Given a sequence $\varrho =(r_n)_n\in [0,1)$ tending to $1$, we consider the set ${\mathcal {U}}_A({\mathbb {D}},\varrho )$ of Abel universal functions consisting of holomorphic functions f in the open unit disk $\mathbb {D}$ such that for any compact set K included in the unit circle ${\mathbb {T}}$, different from ${\mathbb {T}}$, the set $\{z\mapsto f(r_n \cdot )\vert _K:n\in \mathbb {N}\}$ is dense in the space ${\mathcal {C}}(K)$ of continuous functions on K. It is known that the set ${\mathcal {U}}_A({\mathbb {D}},\varrho )$ is residual in $H(\mathbb {D})$. We prove that it does not coincide with any other classical sets of universal holomorphic functions. In particular, it is not even comparable in terms of inclusion to the set of holomorphic functions whose Taylor polynomials at $0$ are dense in ${\mathcal {C}}(K)$ for any compact set $K\subset {\mathbb {T}}$ different from ${\mathbb {T}}$. Moreover, we prove that the class of Abel universal functions is not invariant under the action of the differentiation operator. Finally, an Abel universal function can be viewed as a universal vector of the sequence of dilation operators $T_n:f\mapsto f(r_n \cdot )$ acting on $H(\mathbb {D})$. Thus, we study the dynamical properties of $(T_n)_n$ such as the multiuniversality and the (common) frequent universality. All the proofs are constructive.
In Gauthier, Manolaki, and Nestoridis (2021, Advances in Mathematics 381, 107649), in order to correct a false Mergelyan-type statement given in Gamelin and Garnett (1969, Transactions of the American Mathematical Society 143, 187–200) on uniform approximation on compact sets K in $\mathbb C^d$, the authors introduced a natural function algebra $A_D(K)$ which is smaller than the classical one $A(K)$. In the present paper, we investigate when these two algebras coincide and compare them with the classes of all plausibly approximable functions by polynomials or rational functions or functions holomorphic on open sets containing the compact set K. Finally, we introduce a notion of O-hull of K and strengthen known results.
A bosonic Laplacian, which is a generalization of Laplacian, is constructed as a second-order conformally invariant differential operator acting on functions taking values in irreducible representations of the special orthogonal group, hence of the spin group. In this paper, we firstly introduce some properties for homogeneous polynomial null solutions to bosonic Laplacians, which give us some important results, such as an orthogonal decomposition of the space of polynomials in terms of homogeneous polynomial null solutions to bosonic Laplacians, etc. This work helps us to introduce Bergman spaces related to bosonic Laplacians, named as bosonic Bergman spaces, in higher spin spaces. Reproducing kernels for bosonic Bergman spaces in the unit ball and a description of bosonic Bergman projection are given as well. At the end, we investigate bosonic Hardy spaces, which are considered as generalizations of harmonic Hardy spaces. Analogs of some well-known results for harmonic Hardy spaces are provided here. For instance, connections to certain complex Borel measure spaces, growth estimates for functions in the bosonic Hardy spaces, etc.
We prove several sharp distortion and monotonicity theorems for spherically convex functions defined on the unit disk involving geometric quantities such as spherical length, spherical area, and total spherical curvature. These results can be viewed as geometric variants of the classical Schwarz lemma for spherically convex functions.
The set of points that escape to infinity under iteration of a cosine map, that is, of the form $C_{a,\,b} \colon z \mapsto ae^z+be^{-z}$ for $a,\,b\in \mathbb{C}^\ast$, consists of a collection of injective curves, called dynamic rays. If a critical value of $C_{a,\,b}$ escapes to infinity, then some of its dynamic rays overlap pairwise and split at critical points. We consider a large subclass of cosine maps with escaping critical values, including the map $z\mapsto \cosh(z)$. We provide an explicit topological model for their dynamics on their Julia sets. We do so by first providing a model for the dynamics near infinity of any cosine map, and then modifying it to reflect the splitting of rays for functions of the subclass we study. As an application, we give an explicit combinatorial description of the overlap occurring between the dynamic rays of $z\mapsto \cosh(z)$, and conclude that no two of its dynamic rays land together.
We consider an analogue of Kontsevich’s matrix Airy function where the cubic potential $\textrm{Tr}(\Phi^3)$ is replaced by a quartic term $\textrm{Tr}\!\left(\Phi^4\right)$. Cumulants of the resulting measure are known to decompose into cycle types for which a recursive system of equations can be established. We develop a new, purely algebraic geometrical solution strategy for the two initial equations of the recursion, based on properties of Cauchy matrices. These structures led in subsequent work to the discovery that the quartic analogue of the Kontsevich model obeys blobbed topological recursion.
We prove that for any infinite sets of nonnegative integers $\mathcal {A}$ and $\mathcal {B}$, there exist transcendental analytic functions $f\in \mathbb {Z}\{z\}$ whose coefficients vanish for any indexes $n\not \in \mathcal {A}+\mathcal {B}$ and for which $f(z)$ is algebraic whenever z is algebraic and $|z|<1$. As a consequence, we provide an affirmative answer for an asymptotic version of Mahler’s problem A.
Inspired by Xiao’s work on Hankel measures for Hardy and Bergman spaces [‘Pseudo-Carleson measures for weighted Bergman spaces’. Michigan Math. J.47 (2000), 447–452], we introduce Hankel measures for Fock space $F^p_\alpha $. Given $p\ge 1$, we obtain several equivalent descriptions for such measures on $F^p_\alpha $.
We characterize zero sets for which every subset remains a zero set too in the Fock space $\mathcal {F}^p$, $1\leq p<\infty $. We are also interested in the study of a stability problem for some examples of uniqueness set with zero excess in Fock spaces.
Two boundary value problems are solved for potential steady-state 2D Darcian seepage flows towards a line sink in a homogeneous isotropic soil from a ponded land surface, which is not flat but profiled. The aim of this shaping is ‘uniformisation’ of the velocity and travel time between this surface and a horizontal drain modelled by a line sink. The complex potential domain is a half-strip, which is mapped onto a reference plane. Either the velocity magnitude or a vertical coordinate along the land surface are control variables. Either a complexified velocity or complex physical coordinate is reconstructed by solving mixed boundary-value problems with the help of the Keldysh-Sedov formula via singular integrals, the kernel of which are the control functions. The flow nets, isotachs and breakthrough curves are found by computer algebra routines. A designed soil hump above the drain ameliorates an unwanted ‘preferential flow’ (shortcut) and improves leaching of salinised soil of a cropfield during a pre-cultivation season.
Let $f(z)=\sum _{n=0}^\infty a_n z^n$ be an entire function on the complex plane, and let ${\mathcal R} f(z) = \sum _{n=0}^\infty a_n X_n z^n$ be its randomization induced by a standard sequence $(X_n)_n$ of independent Bernoulli, Steinhaus, or Gaussian random variables. In this paper, we characterize those functions $f(z)$ such that ${\mathcal R} f(z)$ is almost surely in the Fock space ${\mathcal F}_{\alpha }^p$ for any $p, \alpha \in (0,\infty )$. Then such a characterization, together with embedding theorems which are of independent interests, is used to obtain a Littlewood-type theorem, also known as regularity improvement under randomization within the scale of Fock spaces. Other results obtained in this paper include: (a) a characterization of random analytic functions in the mixed-norm space ${\mathcal F}(\infty , q, \alpha )$, an endpoint version of Fock spaces, via entropy integrals; (b) a complete description of random lacunary elements in Fock spaces; and (c) a complete description of random multipliers between different Fock spaces.
determines, under certain growth restrictions, not only the growth but also the oscillation of the equation’s nontrivial solutions, and vice versa. A uniform treatment of this principle is given in the disc $D(0,R)$, $0<R\leqslant \infty $, by using several measures for growth that are more flexible than those in the existing literature, and therefore permit more detailed analysis. In particular, the results obtained are not restricted to cases where the solutions are of finite (iterated) order of growth in the classical sense. The new findings are based on an accurate integrated estimate for logarithmic derivatives of meromorphic functions, which preserves generality in terms of three free parameters.
In this note, we mainly study operator-theoretic properties on the Besov space $B_{1}$ on the unit disk. This space is the minimal Möbius-invariant space. First, we consider the boundedness of Volterra-type operators. Second, we prove that Volterra-type operators belong to the Deddens algebra of a composition operator. Third, we obtain estimates for the essential norm of Volterra-type operators. Finally, we give a complete characterization of the spectrum of Volterra-type operators.
The aim of this paper is to establish the boundedness of fractional type Marcinkiewicz integral $\mathcal {M}_{\iota ,\rho ,m}$ and its commutator $\mathcal {M}_{\iota ,\rho ,m,b}$ on generalized Morrey spaces and on Morrey spaces over nonhomogeneous metric measure spaces which satisfy the upper doubling and geometrically doubling conditions. Under the assumption that the dominating function $\lambda $ satisfies $\epsilon $-weak reverse doubling condition, the author proves that $\mathcal {M}_{\iota ,\rho ,m}$ is bounded on generalized Morrey space $L^{p,\phi }(\mu )$ and on Morrey space $M^{p}_{q}(\mu )$. Furthermore, the boundedness of the commutator $\mathcal {M}_{\iota ,\rho ,m,b}$ generated by $\mathcal {M}_{\iota ,\rho ,m}$ and regularized $\mathrm {BMO}$ space with discrete coefficient (= $\widetilde {\mathrm {RBMO}}(\mu )$) on space $L^{p,\phi }(\mu )$ and on space $M^{p}_{q}(\mu )$ is also obtained.
For a domain G in the one-point compactification $\overline{\mathbb{R}}^n = {\mathbb{R}}^n \cup \{ \infty\}$ of ${\mathbb{R}}^n, n \geqslant 2$, we characterise the completeness of the modulus metric $\mu_G$ in terms of a potential-theoretic thickness condition of $\partial G\,,$ Martio’s M-condition [35]. Next, we prove that $\partial G$ is uniformly perfect if and only if $\mu_G$ admits a minorant in terms of a Möbius invariant metric. Several applications to quasiconformal maps are given.
In this paper, we prove the well-known Erdős–Lax inequality [4] in a sharpened form. As a consequence, another widely used inequality due to Ankeny and Rivlin [1] gets sharpened. These results may be useful in various applications that required the Erdős–Lax and the Ankeny–Rivlin inequalities.