To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we study the $(s, C(s))$-Harnack inequality in a domain $G\subset \mathbb {R}^n$ for $s\in (0,1)$ and $C(s)\geq 1$ and present a series of inequalities related to $(s, C(s))$-Harnack functions and the Harnack metric. We also investigate the behavior of the Harnack metric under K-quasiconformal and K-quasiregular mappings, where $K\geq 1$. Finally, we provide a type of harmonic Schwarz lemma and improve the Schwarz–Pick estimate for a real-valued harmonic function.
We are interested in the optimal growth in terms of Lp-averages of hypercyclic and $\mathcal{U}$-frequently hypercyclic functions for some weighted Taylor shift operators acting on the space of analytic functions on the unit disc. We unify the results obtained by considering intermediate notions of upper frequent hypercyclicity between $\mathcal{U}$-frequent hypercyclicity and hypercyclicity.
We investigate different geometrical properties, related to Carleson measures and pseudo-hyperbolic separation, of inhomogeneous Poisson point processes on the unit disk. In particular, we give conditions so that these random sequences are almost surely interpolating for the Hardy, Bloch or weighted Dirichlet spaces.
where $f(z)=\sum _{n=0}^\infty a_n z^n \in H({\mathbb D})$ and $(X_n)_{n \geq 0}$ is a standard sequence of independent Bernoulli, Steinhaus, or complex Gaussian random variables. In this paper, we demonstrate that prescribing a polynomial growth rate for random analytic functions over the unit disk leads to rather satisfactory characterizations of those $f \in H({\mathbb D})$ such that ${\mathcal R} f$ admits a given rate almost surely. In particular, we show that the growth rate of the random functions, the growth rate of their Taylor coefficients, and the asymptotic distribution of their zero sets can mutually, completely determine each other. Although the problem is purely complex analytic, the key strategy in the proofs is to introduce a class of auxiliary Banach spaces, which facilitate quantitative estimates.
In a recent breakthrough, Dimitrov [Dim] solved the Schinzel–Zassenhaus conjecture. We follow his approach and adapt it to certain dynamical systems arising from polynomials of the form $T^p+c$, where p is a prime number and where the orbit of $0$ is finite. For example, if $p=2$ and $0$ is periodic under $T^2+c$ with $c\in \mathbb {R}$, we prove a lower bound for the local canonical height of a wandering algebraic integer that is inversely proportional to the field degree. From this, we are able to deduce a lower bound for the canonical height of a wandering point that decays like the inverse square of the field degree. For these f, our method has application to the irreducibility of polynomials. Indeed, say y is preperiodic under f but not periodic. Then any iteration of f minus y is irreducible in $\mathbb {Q}(y)[T]$.
Let ${{\mathcal {H}}}$ be a stratum of translation surfaces with at least two singularities, let $m_{{{\mathcal {H}}}}$ denote the Masur-Veech measure on ${{\mathcal {H}}}$, and let $Z_0$ be a flow on $({{\mathcal {H}}}, m_{{{\mathcal {H}}}})$ obtained by integrating a Rel vector field. We prove that $Z_0$ is mixing of all orders, and in particular is ergodic. We also characterize the ergodicity of flows defined by Rel vector fields, for more general spaces $({\mathcal L}, m_{{\mathcal L}})$, where ${\mathcal L} \subset {{\mathcal {H}}}$ is an orbit-closure for the action of $G = \operatorname {SL}_2({\mathbb {R}})$ (i.e., an affine invariant subvariety) and $m_{{\mathcal L}}$ is the natural measure. These results are conditional on a forthcoming measure classification result of Brown, Eskin, Filip and Rodriguez-Hertz. We also prove that the entropy of $Z_0$ with respect to any of the measures $m_{{{\mathcal L}}}$ is zero.
This article aims to establish fractional Sobolev trace inequalities, logarithmic Sobolev trace inequalities, and Hardy trace inequalities associated with time-space fractional heat equations. The key steps involve establishing dedicated estimates for the fractional heat kernel, regularity estimates for the solution of the time-space fractional equations, and characterizing the norm of $\dot {W}^{\nu /2}_p(\mathbb {R}^n)$ in terms of the solution $u(x,t)$. Additionally, fractional logarithmic Gagliardo–Nirenberg inequalities are proven, leading to $L^p-$logarithmic Sobolev inequalities for $\dot {W}^{\nu /2}_{p}(\mathbb R^{n})$. As a byproduct, Sobolev affine trace-type inequalities for $\dot {H}^{-\nu /2}(\mathbb {R}^n)$ and local Sobolev-type trace inequalities for $Q_{\nu /2}(\mathbb {R}^n)$ are established.
We study the distribution of the length of longest increasing subsequences in random permutations of n integers as n grows large and establish an asymptotic expansion in powers of $n^{-1/3}$. Whilst the limit law was already shown by Baik, Deift and Johansson to be the GUE Tracy–Widom distribution F, we find explicit analytic expressions of the first few finite-size correction terms as linear combinations of higher order derivatives of F with rational polynomial coefficients. Our proof replaces Johansson’s de-Poissonization, which is based on monotonicity as a Tauberian condition, by analytic de-Poissonization of Jacquet and Szpankowski, which is based on growth conditions in the complex plane; it is subject to a tameness hypothesis concerning complex zeros of the analytically continued Poissonized length distribution. In a preparatory step an expansion of the hard-to-soft edge transition law of LUE is studied, which is lifted to an expansion of the Poissonized length distribution for large intensities. Finally, expansions of Stirling-type approximations and of the expected value and variance of the length distribution are given.
We study the problem of determining the holomorphic self maps of the unit disc that induce a bounded composition operator on Dirichlet-type spaces. We find a class of symbols $\varphi $ that induce a bounded composition operator on the Dirichlet-type spaces, by applying results of the multidimensional theory of composition operators for the weighted Bergman spaces of the bi-disc.
The central theme of this paper is the holomorphic spectral theory of the canonical Laplace operator of the complement of the “complexified unit circle” $\{(z,w) \in \widehat {{\mathbb C}}^2 \colon z \cdot w = 1\}$. We start by singling out a distinguished set of holomorphic eigenfunctions on the bidisk in terms of hypergeometric ${}_2F_1$ functions and prove that they provide a spectral decomposition of every holomorphic eigenfunction on the bidisk. As a second step, we identify the maximal domains of definition of these eigenfunctions and show that these maximal domains naturally determine the fine structure of the eigenspaces. Our main result gives an intrinsic classification of all closed Möbius invariant subspaces of eigenspaces of the canonical Laplacian of $\Omega $. Generalizing foundational prior work of Helgason and Rudin, this provides a unifying complex analytic framework for the real-analytic eigenvalue theories of both the hyperbolic and spherical Laplace operators on the open unit disk resp. the Riemann sphere and, in particular, shows how they are interrelated with one another.
on three important function spaces (i.e., derivative Hardy spaces, weighted Dirichlet spaces, and Bloch type spaces), which is a continuation of the previous works of Mirotin et al. Here, $\mu $ is a positive Radon measure, K is a $\mu $-measurable function on the open unit disk $\mathbb {D}$, and $\sigma _w(z)$ is the classical Möbius transform of $\mathbb {D}$.
This paper consists of two parts. The first is to study the existence of a point a at the intersection of the Julia set and the escaping set such that a goes to infinity under iterates along Julia directions or Borel directions. Additionally, we find such points that approximate all Borel directions to escape if the meromorphic functions have positive lower order. We confirm the existence of such slowly escaping points under a weaker growth condition. The second is to study the connection between the Fatou set and argument distribution. In view of the filling disks, we show nonexistence of multiply connected Fatou components if an entire function satisfies a weaker growth condition. We prove that the absence of singular directions implies the nonexistence of large annuli in the Fatou set.
For $-1\leq B \lt A\leq 1$, let $\mathcal{C}(A,B)$ denote the class of normalized Janowski convex functions defined in the unit disk $\mathbb{D}:=\{z\in\mathbb{C}:|z| \lt 1\}$ that satisfy the subordination relation $1+zf''(z)/f'(z)\prec (1+Az)/(1+Bz)$. In the present article, we determine the sharp estimate of the Schwarzian norm for functions in the class $\mathcal{C}(A,B)$. The Dieudonné’s lemma which gives the exact region of variability for derivatives at a point of bounded functions, plays the key role in this study, and we also use this lemma to construct the extremal functions for the sharpness by a new method.
We prove Abelian and Tauberian theorems for regularized Cauchy transforms of positive Borel measures on the real line whose distribution functions grow at most polynomially at infinity. In particular, we relate the asymptotics of the distribution functions to the asymptotics of the regularized Cauchy transform.
Let $f(z)=\sum _{n=0}^{\infty }a_n z^n \in H(\mathbb {D})$ be an analytic function over the unit disk in the complex plane, and let $\mathcal {R} f$ be its randomization:
where $(X_n)_{n\ge 0}$ is a standard sequence of independent Bernoulli, Steinhaus, or Gaussian random variables. In this note, we characterize those $f(z) \in H(\mathbb {D})$ such that the zero set of $\mathcal {R} f$ satisfies a Blaschke-type condition almost surely:
We verify a long-standing conjecture on the membership of univalent harmonic mappings in the Hardy space, whenever the functions have a “nice” analytic part. We also produce a coefficient estimate for these functions, which is in a sense best possible. The problem is then explored in a new direction, without the additional hypothesis. Interestingly, our ideas extend to certain classes of locally univalent harmonic mappings. Finally, we prove a Baernstein-type extremal result for the function $\log (h'+cg')$, when $f=h+\overline {g}$ is a close-to-convex harmonic function, and c is a constant. This leads to a sharp coefficient inequality for these functions.
Consider the multiplication operator MB in $L^2(\mathbb{T})$, where the symbol B is a finite Blaschke product. In this article, we characterize the commutant of MB in $L^2(\mathbb{T})$. As an application of this characterization result, we explicitly determine the class of conjugations commuting with $M_{z^2}$ or making $M_{z^2}$ complex symmetric by introducing a new class of conjugations in $L^2(\mathbb{T})$. Moreover, we analyse their properties while keeping the whole Hardy space, model space and Beurling-type subspaces invariant. Furthermore, we extended our study concerning conjugations in the case of finite Blaschke products.
Let $H^\infty $ be the algebra of bounded holomorphic functions on the open unit disk, and let $\mathfrak M$ be its maximal ideal space. Let $\mathfrak M_a$ be the union of nontrivial Gleason parts (analytic disks) of $\mathfrak M$. In this paper, we study the problem of extensions of bounded Banach-valued holomorphic functions and holomorphic maps with values in Oka manifolds from Gleason parts of $\mathfrak M_a\setminus \mathbb {D}$. The resulting extensions satisfy the uniform boundedness principle in the sense that their norms are bounded by constants that do not depend on the choice of the Gleason part. The results extend fundamental results of D. Suárez on the characterization of the algebra of restrictions of Gelfand transforms of functions in $H^\infty $ to Gleason parts of $ \mathfrak M_a\setminus \mathbb {D}$. The proofs utilize our recent advances on $\bar \partial $-equations on quasi-interpolating sets and Runge-type approximations.
We study symmetric and antisymmetric tensor products of Hilbert-space operators, focusing on norms and spectra for some well-known classes favored by function-theoretic operator theorists. We pose many open questions that should interest the field.